
1

Enabling Custom Enhancements in Digital Sports
Broadcasts

Richter A. RafeySimon Gibbs Michael Hoch Hubert Le Van Gong Sidney Wang

Sony U.S. Research Laboratories, Distributed Systems Lab

3300 Zanker Road, San Jose, California 95134 USA

{rafey|simon|micha|lvg|swang}@arch.sel.sony.com

ABSTRACT

Digital TV is an area where interaction is expected to become
increasingly prevalent in the next few years. Graphics technolo-
gies like VRML that are designed for distributing applications
provide a presentation engine that can serve as a foundation for
moving visual enhancements from the studio to the consumer
platform. As these enhancements move downstream to viewers,
they introduce capabilities for compelling interaction. We have
developed a prototype that extends VRML to support interac-
tive TV applications, specifically focusing on enhancements for
sports broadcasts. Our extensions are built on Blendo [1], a
presentation engine developed in Sony that derives from VRML.
This paper describes the context for our extensions and the spe-
cific extensions that we have developed so far.

Keywords
Applications, Digital TV, Graphics Systems, Interactive TV,
Multimedia, Sports Broadcasting, Video, VRML.

1. INTRODUCTION
Interactive TV is evolving as a compelling space for new media
applications as platforms that enable interaction become avail-
able in more households. Digital TV (DTV) enhances the poten-
tial of interactive TV by providing a very high bandwidth data
channel into homes that can be synchronized with A/V broad-
casts. The Broadcast Virtual Worlds (BVW) project in Sony’s
U.S. Research Laboratories is exploring the features of new ap-
plications that can emerge to differentiate DTV from traditional
analog broadcasting.

Sports broadcasts represent a particularly interesting domain for
interactive TV. Sports are inherently competitive and thus lend
themselves to play-along scenarios. There is also a tremendous
amount of associated data that can be challenging to present
effectively for a mass audience. The nature of most sports pro-
gramming being live is unique in that producers must be able to
dynamically insert interactive enhancements to complement the
action of the event. New innovations in camera tracking are
addressing sports as an early target domain for graphical en-

hancements that are visually registered with the footage (e.g., the
orange first down line in NFL football broadcasts).

Our research builds in part on the premise that moving control of
broadcast enhancements from the studio (for mass presentation)
into the living room (for personalized consumption) is one way
of enabling interaction. Our colleagues at Sony have developed
Blendo [1], a presentation engine derived from VRML but
adapted to support the extensibility, performance, and pro-
grammability that are required to be suitable for interactive TV.
Blendo exploits the graphics capabilities of emerging consumer
platforms to provide late composition. It enables consumer de-
vices to deliver the production quality that traditionally could
only be achieved with equipment in broadcast suites. The BVW
project uses Blendo as the presentation engine in our develop-
ment. The syntax and structure of Blendo is based on VRML,
and as such these extensions are applicable to VRML in general.

We have developed four classes of extensions to make Blendo
suitable for sports enhancements that result in new
Blendo/VRML nodes:

• Live video integration
• Registered graphics insertion
• Streaming data
• Interaction via remote control

These extensions enable a graphics-capable platform (e.g., a PC,
set top box, or game console) to interpret Blendo/VRML content
and render the graphics under user control.

In this paper we describe how we applied Blendo and these
extensions to develop a prototype to demonstrate interactive
scenarios in an auto-racing broadcast. Section 2 describes current
work in digital broadcasting and sports enhancements. Section 3
describes the prototype we have developed to validate and refine
our ideas. Section 4 addresses the specific extensions we built to
support key features through the declarative Blendo language.
We conclude with our results and research directions.

2

2. BACKGROUND
Several companies have developed systems for inserting regis-
tered graphics into live video. These systems are typically tar-
geted towards sports broadcasts and use a combination of cam-
era tracking and object tracking technologies. An early example is
the FoxTrack system from Sportvision [2]. Using positional
information obtained from IR transmitters in hockey pucks,
visual enhancements such as glows or streaks can be rendered
where the hockey puck appears in the video frame. More re-
cently Sportvision has developed a system for rendering a virtual
“1st and 10” line now used in many NFL broadcasts.

A second form of registered graphics enhancement, also targeted
towards sports broadcasts, is the insertion of images (typically
advertising logos) registered to physical surfaces at the event site
(e.g., the playing field, existing billboards). Orad [3] is one of the
pioneers of this technique, which again uses camera tracking and
chroma-keying techniques. As a recent example, in NBC broad-
casts from the summer Olympics in Sydney, shots of the
swimming events had flags inserted into the swimming lanes as a
way of helping viewers identify the competitors.

Our work uses similar techniques for rendering and compositing,
but differs by moving the processing from studio tools to a
graphics-capable client in the home. Emerging digital media
standards like ATSC [4] provide the means of transmitting the
necessary data streams to consumer platforms. VRML97 [5]
provides a foundation for dynamically updated graphics content
on distributed platforms, but it lacks several features that are
critical to support these kinds of visual enhancements. Blendo
provides an extensible version of VRML where we can fill in
these gaps to move sports enhancements downstream to con-
sumer platforms.

3. PROTOTYPE: AUTO RACING
For our prototype, we have selected auto racing as the target
domain. Auto racing is a compelling starting point for exploring
interactive TV for a variety of reasons. First, live streamed data
is collected automatically, which reduces the requirement for
authoring while still providing a data-rich environment. The fact
that there is a large international audience enhances the poten-
tial reach of our work and grounds it in a familiar domain. Since
we are focusing largely on the role of computer graphics in our
applications, auto racing simplifies the process in some ways
because of the fairly constrained visual representation (mostly
rigid cars circling a fixed track).

3.1 Prototype Features
Our prototype covers a set of experimental interactive scenarios.
For the purposes of this paper we focus on three of these.

Polling

A relatively simple interactive feature presents questions that
test viewers’ knowledge or ask them to make predictions. By
introducing scoring that endures (and potentially prizes), the
interactive version appeals to the competitive nature of viewers

and also introduces some social context by ranking the scores
among viewers. The value of doing this as a local enhancement is
that people can decide to play along and have the questions ap-
pear on the local presentation engine without cluttering the
screen for those who are not interested in such features.

Cockpit

A good example of dynamic data that could be automatically
delivered and presented based on local preferences is a cockpit
view that shows a graphical representation of sensor data from
the cars (speed, RPM, lateral force). There are systems in place
to provide such a graphical representation as part of the broad-
cast stream, but broadcasters have to be very selective about
when to present it to avoid annoying viewers. By moving this
to a local presentation engine, we give viewers the flexibility to
visualize sensors as they like and for whichever cars interest
them. Since it is rendered locally based on data, it is possible to
render alternative visualizations and “skins” based on viewer
preferences.

Performance

Broadcast enhancements like the synthetic first down line are
also strong candidates for customization, as they introduce a
tradeoff between the visual purity of the event and the potential
for optimally presenting interesting information. Purists may
resent their presence, but others quickly adopt such features as
key to the viewing experience. We explore this with a scenario
where we showcase lateral acceleration mapped as a dynamic,
color-coded arrow on the cars as they handle a particular turn.
Rendering this locally requires camera-tracking data in addition
to the car data (including position/orientation). The presentation
engine must be able to process these various forms of data to
present appropriate visual representations on demand.

3.2 Data Sources
Moving the processing from the studio to the home raises many
issues for preparing data and populating a scene that are differ-
ent from traditional VRML in the Web domain.

The real-time data available for interactive sports broadcasts will
typically consist of data feeds obtained from several sources
(e.g., the event organizing authority, specialized “data provid-
ers”). For a car racing application, possible data feeds include:

1) camera tracking data – camera extrinsic and intrinsic (Tsai
model [6]) parameters.

2) car tracking data – car position and orientation data.

3) car telemetry data – car performance data (rpm, gear, etc.).

4) standings data – official standings data, typically calculated
as cars pass particular points on the track

The data rate and synchronization requirements of the feeds will
vary. For example, the camera tracking data is typically obtained
on a per-frame basis and must be synchronized on the receiver
with the corresponding video frame.

3

3.3 Testbed System
Figure 1 illustrates the end-to-end system that we are using for a
testbed. The left-hand side depicts the production of an MPEG
transport stream with encapsulated IP data. The configuration
shown here differs from the typical DTV production chain
through the introduction of the two components labeled Data
Acquisition and Data Injector in Figure 1. The data acquisition
component handles the various real-time data sources made
available to the broadcaster. For our car racing example applica-
tion, this component obtains the camera tracking, car tracking,
car telemetry and standings data feeds and converts these into IP
packets which are then sent to the data injector. The data injec-
tor receives the IP packets and encapsulates them in an elemen-
tary stream that is multiplexed with the A/V elementary streams.
The resulting transport stream is then modulated and transmitted
to the receiver device.

A DTV receiver is a device that tunes to a DTV signal, demodu-
lates and demultiplexes the incoming transport stream, decodes
the A/V elementary streams, and outputs the result. We call a
DTV receiver “data capable” if it can in addition extract applica-
tion data from elementary streams. The data capable DTV re-
ceiver is the target platform for our work. These devices can be
realized in many ways: a digital set-top box that connects to a
television monitor, an integrated receiver and display, or a PC
with a DTV card. For our current development we are using the
latter with the Blendo engine as the application.

4. VRML EXTENSIONS
To enable the features we wanted to showcase in our prototype,
there are four major areas of extensions we built. These exten-
sions are implemented as new Blendo nodes that allow declara-
tive use and easy authoring. The extensions all have potential
value in future Web applications as well, but they are essential
for making VRML a suitable platform for interactive TV appli-
cations.

4.1 Live Video Integration
VRML97 supports a MovieTexture primitive to present video
clips, but streamed video from a broadcast is not directly sup-
ported. Blendo introduces a new level of abstraction to support
video synthesis, called surfaces. By using this abstraction,

Blendo’s architecture enables arbitrary marking engines (e.g.,
video, HTML, Flash) to render into the scene at the appropriate
frame rate without burdening other elements (e.g., a 5 frames/sec
animation on one surface would not prevent video on another
surface from playing at 30 fps). Blendo introduced a MovieSur-
face node to capture the semantics of controlling and displaying
30 fps video.

In our work, we have subclassed the MovieSurface to support a
live video stream (vs. locally stored video) as a VideoSurface
node. The semantic definition of the new node is shown as fol-
lows:

VideoSurface {
field SFString videoSource "ATSC"
field SFVec2f videoResolution 720 480

}
The videoSource field of the VideoSurface node indicates where
the VRML browser is receiving video input. The possible values
of the field are hardware dependent – for our particular testing
platform there are three possibilities: ATSC, COMPOSITE, and
SDI. In the case of ATSC, the decoded video is extracted directly
from a Hauppauge ATSC receiver/tuner card [7] and displayed
onto the surface. In this configuration we are assuming that the
Blendo browser and the DTV receiver reside in the same machine
or set top box. Alternatively, one can envision a two-box setup,
where the first box is a DTV receiver and the second box exe-
cutes our Blendo compositor. The decoded video stream is sent
from the DTV receiver to the compositor via either the COM-
POSITE video port or the SDI (serial digital interface) video
port.

The videoResolution field specifies the dimensions of the ex-
tracted video. Currently our compositor has the capability of
handling full-sized NTSC video of 720x480 at 30 fps. The
Hauppauge ATSC tuner card is able to down filter any of the
ATSC video resolutions to 720x480.

4.2 Registered Graphics Insertion
Some classes of enhancements require placement that is corre-
lated with objects in the video. Since current camera and object
tracking systems provide the data required for accurate graphical
insertions registered with the video, we have developed new
nodes in Blendo that can support these data fields to allow a

elementary stream carrying application

AV Produc-
tion

MPEG2
Encoder

Data
Acquisition

Modula-

MPEG2 Transport

IP

Tune De- MPEG2
Decoder

Blend

DTV | STB | PC + DTV

DTV Re-
DTV delivery
(cable, sat-
ellite, ter-
restrial

broadcast)

DTV Produc-

Data
Injector

Figure 1: End-to-end system for delivering DTV content to Blendo

4

declarative representation for camera-aligned overlay graphics.
The camera tracking equipment, well known from virtual studios
[8], typically uses encoders to read the current pan, tilt, and
twist of the camera, as well as, the zoom level, i.e., the field of
view. Furthermore, the position of the camera is tracked in order
to reproduce a virtual camera that corresponds to the real cam-
era.

The next step is to render the graphics at the appropriate posi-
tion and size using the virtual camera and, thereafter, composite
the rendered set with the camera shot. However, geometric cor-
rection that accounts for lens distortion and optical center shift
is often not applied because of the increased processing cost.
The correction becomes necessary if we want to insert graphical
objects that are aligned with the content of the video feed. We
apply a correction technique that is related to the well-known
techniques of rectification and geometric correction [9], which
are normally applied on a per-image basis. Here, we introduce a
two-pass rendering technique that renders the scene that is to be
used as a texture in the second pass. This texture is then cor-
rected for distortion parameters (radial distortion and optical
center shift) and finally composited with the current video im-
age. Some current virtual set systems perform this correction
since it becomes especially important if one has, for example,
real objects sitting on virtual objects. Without lens distortion
correction, real objects can appear to slide over the virtual set as
the camera pans or zooms.

Gridnode {
field SFVec2f dimension 10 10
field SFVec3f distort 0 0 0

}
We developed a parameterized Gridnode as an extension to
Blendo, e.g., 10x10 points with an IndexedFaceSet, that renders a
scene with the virtual camera set so that it corresponds to the
position, pan, tilt, twist, and field of view of the current video
feed. The Gridnode’s texture coordinates are adjusted to correct
for the optical center shift and the radial lens distortion (general
formula). The final texture will be composited (overlaid) on the
video feed. Gridnode is derived from GeometryNode, and it
allows the integration of camera tracking data in VRML syntax:

PROTO Gridnode
"urn:vrml:sony.com:native/nodes/Extensions#G
ridNode"
PROTO MyScene "scene.blo"
Transform {

children [
Shape {

appearance Appearance {
material Material { }
texture Texture {

surface SceneSurface {
children [

DEF scene MyScene {}
]

}
}

}
geometry Gridnode {

dimension 10 10
distort FROM scene.distort

}
}

}
}
Figure 2: Declarative use of Gridnode as a geometry

The scene (defined in the file scene.blo) that gets rendered onto
the IndexedFaceSet of the Gridnode uses the CameraViewpoint
node.

CameraViewpoint {
<fields from Viewpoint omitted for clar-

ity>
field SFVec3f distort 0.2 0.1 0.000194

}
CameraViewpoint extends the Viewpoint node such that it is
able to accept camera data (the data is getting collected and
routed to the CameraViewpoint node using the DataHandler
node described in the next section) to adjust itself in position,
field of view, etc., corresponding to the data. The distort parame-
ter that is passed into the Gridnode holds the optical center shift
in the x and y directions and the first order radial lens distortion
parameter. We use a 3-dimensional vector here to simplify pa-
rameter passing.

field SFVec3f distort FROM Tracked-
Cam1.distort

PROTO CameraViewpoint
"urn:vrml:sony.com:native/nodes/Extensions#C
ameraViewpoint"
DEF TrackedCam1 CameraViewpoint {

fieldOfView 0.635262
distort 0.2 0.1 0.000194
description "MainView"

}
…
<other graphic objects omitted for clarity>
…
Figure 3: File scene.blo containing the graphic objects to be
inserted with CameraViewpoint node that gets updated by
tracking data

The field distort at the beginning of scene.blo uses a Blendo
ROUTE statement (FROM) to access the distort field of Track-
edCam1. This in turn allows this field to be accessed when
scene.blo is instantiated. In this case the field is accessed to
route the data to the Gridnode (Figure 2).

4.3 Streaming Data
While VRML provides an event model that enables triggering
media events based on signals, there is no data architecture built
into VRML beyond some simple field types. We developed a
data architecture and have chosen MPEG-2 as our primary de-
livery mechanism to be in step with emerging digital broadcasting
standards.

Current digital television broadcast services, whether satellite,
cable, or over-the-air, are based on the MPEG-2 standard. In
addition to specifying audio/video encoding, MPEG-2 defines a

5

transport stream format consisting of a multiplex of elementary
streams. The elementary streams may be compressed audio or
video data, information about the structure of the transport
stream, and arbitrary data. Standards such as DSM-CC [10] and
the more recent ATSC data broadcast standard give ways of
placing IP datagrams in elementary data streams.

For this reason we have created a top-level extension node for
handling the ATSC data stack called ATSC_DataHandler with
the following interface:

ATSC_DataHandler {
field MFInt32 pid [0, 1, 2]
field MFString type ["INSTANTANEOUS",

 "CONTINUOUS",
 "CAROUSEL"]

field MFBool active [TRUE, TRUE, TRUE]
}

Referencing an elementary data stream is done through the pro-
gram identification field (PID). A DTV receiver should have the
ability to filter out any unwanted data streams and only process
those data streams indicated in the pid field with the active field
set to TRUE. Furthermore, we have defined and classified three
types of data streams: instantaneous stream, continuous stream,
and carouselling stream. Instantaneous stream contains data that
occurs sporadically. One example is the polling scenario where
the broadcaster can insert trivia or polling questions anytime
during the program. Typically this type of data will contain a
presentation time stamp (PTS) so that the compositor can use
this information to present the data at the appropriate time dur-
ing the broadcast. On the other hand, a continuous stream con-
tains data that is updated throughout the entire program. Exam-
ples include camera tracking data and car position/telemetry data.
For this type of stream, synchronization with the broadcast
video is usually done via the timecode information. Finally, we
have defined a type of stream called carousel. Data contained in
the carousel are looped repeatly during the broadcast. For exam-
ple, in motorsports, statistical data (e.g. current standings, cur-
rent lap, etc.) can be carouseled so viewers who tuned in during
middle of the broadcast can access this information at the next
carousel cycle. Also, part of the graphical user interface (GUI)
assets that are specific to a particular race can be placed in the
carousel.

One feature we are exploring is enabling an enduring application
that would persist over multiple broadcasts, e.g., an interactive
application for the entire racing season. The assets that remain
the same over time are locally stored on the presentation plat-
form and assets specific to particular races are downloaded via
the data carousel.

We have designed several packet types to format the data to be
broadcast (e.g CameraTrackingPacket, CarTelemetryPacket...).
These packets have been designed to reduce the bandwidth needs
while providing high accuracy information. Once captured and
gathered at the event site, data is sent over IP to the Data Injec-
tor that encapsulates the data into the MPEG-2 transport
stream. We actually send one chunk of data per frame (29.97

fps) but this could easily be adapted to the needs of the applica-
tion. On the receiver, the tuner board demultiplexes the trans-
port stream and the IP packets are forwarded to the TCP/IP
stack using a pre-defined Multicast group address (set in the
Data Injector). The application listens to this Multicast group to
receive the data.

4.4 User Interaction
Once the enhancements are under the control of the viewer, it is
essential to make these accessible through an intuitive interface.
Television is typically a very passive experience and consumer
acceptance will fall off as the interface strays from the simple
button press on a remote control. Whereas Web-based content
typically involves a mouse-driven cursor that can point to an
arbitrary region of the screen and thus VRML includes a Touch-
Sensor node, Blendo applications are primarily driven by a But-
tonSensor node. The buttons on the input devices such as PC
keyboards, remote controls, game controller pad, etc. trigger this
node.

ButtonSensor {
field SFString buttonOfInterest "ENTER"
field SFTime pressTime 0
field SFTime releaseTime 0
field SFBool enabled TRUE

}

In addition to the standard computer keyboard keys, Blendo has
predefined a set of literal strings that are recognizable as values
for the buttonOfInterest field. Depending on the type of the in-
put device, these literal strings are then mapped to the corre-
sponding buttons of the input device. For example, if the butto-
nOfInterest field contains the value of “REWIND”, the corre-
sponding mapping key for a keyboard input device would
translate to ‘←’, whereas on a TV remote it would map to the
‘<<’ button.

We have taken care in designing the graphical user interface for
our prototype application based on the assumption that TV
viewers are typically limited to four arrow buttons, a select
button, and an exit button. Furthermore, for the most part we are
sticking to the traditional 2D style of menu-driven interface. As
seen in Figure 4, the menu selections are located on the left side
of the screen.

6

Figure 4: Screen layout for user interface.

For each of the menu buttons, we have three images to represent
the states of the button to provide the visual cue as to whether
the button is in a normal, highlight, or selected state. We have
implemented a script node for managing the viewer’s interaction
with the menu interface. It is responsible for updating the menu
display and to trigger the appropriate actions when viewer has
made a selection.

5. RESULTS
We have developed an initial prototype for interactive sports
enhancements based on a CART race from the 1999 season.
This prototype includes a set of interactive scenarios, ranging
from simple statistics on demand to integration with a video
game. The extensions that we focus on in this paper serve as the
foundation for much of our work to date.

For our platform we used Blendo, which enables content that is
portable across a variety of devices that are capable of support-
ing Interactive TV, including game consoles, set top boxes, and
future digital televisions. Our first prototype was built on SGI
320 and 540 NT Workstations since the data paths, particularly
for video texturing, were quite stable there ahead of other graph-
ics hardware. We now have the prototype running on the Play-
Station 2 game console as well, which has an excellent architec-
ture for supporting our graphics requirements. Blendo interprets
the new nodes on these platforms using the declarative represen-
tation of our extensions.

The three scenarios described in Section 3.1 are implemented in
our prototype. Since DTV supports a 16x9 screen aspect ratio,
we use the VideoSurface node to display video with a 4x3 aspect
ratio and present additional information and menus in a vertical
region on the side of the screen.

Figure 5: Polling question with scripted timer based on triggers.

In Figure 5, we illustrate how a polling question appears using a
translucent Blendo layer and a scripted timer to manage user
input via the remote control. People watching the program on a
non-Blendo platform (e.g., traditional TV) do not see any of
these local enhancements. In this case, the data is bursty in na-
ture, only involving synchronized triggers along with the polling
question and, on completion, the results. This is similar to the

triggers in ATVEF [11] that are used in current interactive TV
applications. Blendo provides its own event model for proc-
essing the triggers. The ButtonSensor node is used for all viewer
interactions.

Figure 6: Animated overlay based on streamed telemetry data.

Figure 6 shows an overlay that reflects the real-time data from
the car telemetry. The arrow is based on lateral force on the car
and changes color from green to red based on amplitude. By
moving this downstream to user control, the viewer can view it
selectively. The viewer could choose certain cars to track, dif-
ferent consoles for visualizing the data, and when to display this
data.

Figure 7: Registered graphics insertion using tracking data.

Figure 7 uses the same arrow glyph from the car telemetry, but it
is registered with the car as it goes around a particular curve.
This would be for the serious fan that wants to compare how
various cars deal with subtleties of the track. This illustrates a
registered graphics insertion that uses car telemetry, car position,
and camera tracking data. Features like highlighting a certain car
would not require the telemetry data, but would require the cam-
era and car position information. The CameraViewpoint node
maps the camera data into a virtual camera in Blendo, and the
Gridnode is used to compensate for radial distortion in the lens.

6. FUTURE WORK
Our research is continuing in various areas where we can sim-
plify the task of producing these interactive enhancements.
Some areas of our current research are focusing on more flexible

7

integration of video and graphics assets, based on a Chromakey
node that we are developing. We also believe that video that has
an associated depth map, like that used in current virtual studios,
offers interesting possibilities for improving embedded graphics,
so we are exploring extensions in that space. Whereas our early
emphasis has been on presentation and interaction, a flexible and
robust mechanism for data management is becoming increasingly
important in our work, and we are currently enhancing our data
management system.

Now that we have the foundation for interactive TV enhance-
ments, we are developing some of the more feasible features of
our prototype as part of an over the air test to a private set of
Blendo-enabled platforms. Several stations around the U.S. are
currently performing tests of their DTV systems to assess the
technology and experiment with new forms of entertainment that
DTV enables. We are continuing to focus on auto racing, but we
are beginning to apply the technology to other sports to identify
new opportunities and challenges.

7. REFERENCES
[1] Broadwell, P., Kent, J., Marrin, C., and Myers, R. Blendo:

An Extensible Media Modeling Architecture.
http://www.web3d.org/fs_specifications.htm, 1999.

[2] Cavallaro, R., The FoxTrack Hockey Puck Tracking Sy s-
tem. IEEE Computer Graphics and Applications, 17(2):6-
12, March-April 1997. ISSN 0272-1716.

[3] Orad, http://www.orad.tv/sport/index.htm.

[4] ATSC Data Broadcast Standard (A/90), ATSC July 2000,
www.atsc.org/Standards/A90/A90.html

[5] The Virtual Reality Modeling Language, International Stan-
dard ISO/IEC 14772-1,
http://www.web3d.org/Specifications/VRML97/, 1997.

[6] Tsai, R., A Versatile Camera Calibration Technique For
High-Accuracy 3D Machine Vision Metrology Using Off-
the-Shelf TV Cameras And Lenses, IEEE Journal of Robot-
ics and Automation, RA-3(4): 323-344, August 1987.

[7] Casey, J.B., Aupperle, K., Digital TV And The PC.
http://www.hauppauge.com/html/dtv.pdf, November 1998.

[8] Gibbs, S. et.al., Virtual Studios: An Overview. IEEE Multi-
Media, 5(1):18-35, January-March 1998. ISSN 1070-986X.

[9] Niemann, H., Pattern analysis and understanding. 2nd ed.
Springer, Berlin Heidelberg New York, 1990.

[10] Extensions for Digital Storage Media Command & Control,
International Standard ISO/IEC 13818-6, 1999.

[11] Enhanced Content Specification, Advanced Television En-
hancement Forum (ATVEF),
http://www.atvef.com/library/spec1_1a.html, 1999.

