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Abstract. Task precedence graphs are widely used for modeling and evaluation of
parallel applications. Their nodes represent the subtasks of the parallel program and
the edges represent the precedence relations between the subtasks. The execution
times of the subtasks are described by random variables and their distributions. In our
paper we introduce a new class of distributions, particularly suited for the modeling
and evaluation of parallel programs.

Exponential polynomials introduced by Sahner and Trivedi have the disadvantage
that a large number of parameters is needed for the representation of realistic task
execution times, which usually have a small value of variation. We extend this class to
derive the class of truncated #-exponential polynomials which allow the representation
of realistic task execution times with fewer parameters. Additionally this class of
distributions has the advantage that minimum as well as maximum execution times
can be guaranteed.

Models with a large number of subtasks n can not be evaluated on a computer
using exact analytical methods because of memory requirements and numerical in-
accuracies, which accumulate, when the operations of analysis are applied. Using
extreme value theory we derive approximate formulas for the parallel independent
execution of n subtasks, a structure, which can be found in every parallel program.
The obtained results for truncated and not truncated distributions show, that distri-
butions with an infinite domain are not suitable, particularly for massively parallel
structures.

1. Introduction

Performance modeling which can be used to predict the execution time of a parallel
program is an important tool in the development phase of a parallel application. A well
established approach is the representation of the functional structure of the program
by precedence graphs ([11], [10], [5], [16], [4]). The nodes of these graphs represent
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the subtasks of a parallel program, and the edges represent the precedence relations
between them. Precedence graphs are very popular because of their comprehensibility.

The GIANT-Model![1] which will be introduced in Sect. 2 is also based on prece-
dence graphs. Random variables are assigned to the nodes of the graph to represent
the temporal behavior of the subtasks of the parallel application. Additional param-
eters can be used to represent dynamic scheduling mechanisms and communication
strategies.

Empirical distributions can be provided for the execution times of the tasks if the
model is to be evaluated numerically [10]. Only distributions which can be repre-
sented by a class of functions, which is closed under the operations of analysis are
appropriate for the evaluation on a computer, if the distribution function for the total
completion time of the graph is to be calculated symbolically in the time parame-
ter ¢. Martin [11] uses distributions which are represented piecewise by polynomials
in the analysis of series-parallel structures. Exponential polynomials which are used
by Sahner and Trivedi [17] to model task execution times and also to represent the
reliability of redundant systems, are also closed under the analytic operations for
series-parallel graphs. We will demonstrate in Sect. 3 that exponential polynomials
have the disadvantage that many parameters are required to represent distributions
with small variation and large mean value; these often occur in the modeling of the
execution times of parallel programs. The number of parameters also increases greatly
if the operations of analysis are used.

f-exponential polynomials as introduced in Sect.3.1 are derived from common
exponential polynomials by translation and allow the representation of such distri-
butions with significantly fewer parameters. In Sect. 3.1 it is proven that the class
of f-exponential polynomials has the properties which are required, if the overall
distribution function is to be calculated symbolically in the time parameter ¢. These
properties include closure under the operations multiplication, convolution, integra-
tion, differentiation and the ability to approximate arbitrary distributions to any degree
of accuracy.

In Sect. 3.2 we introduce the class of truncated §-exponential polynomials. These
are created by truncating the right-hand end of f-exponential polynomials, which
makes them suitable for modeling the bounded execution time of subtasks of paral-
lel programs. The useful closure property of the -exponential polynomials remains
intact. We show in Sect.4 that the right-hand end-point of the distributions of the
subtasks has a decisive effect on the total execution time, when modeling massively
parallel systems. In reality the run-times of the subtasks are bounded and thus we
need truncated distributions to represent the run-time behavior correctly.

The accuracy with which the operations of analysis are performed is impacted by
rounding errors, due to the finite accuracy of the representation of numbers in a digital
computer. These accumulate as the analysis progresses and can lead to completely
false results for task structures containing a large number of nodes. It is therefore
practically impossible to determine the exact distribution of the total execution time
of large task structures. Approximation formulas are derived in Sect. 4 using extreme
value theory for the basic structure of parallel applications, the parallel execution of
independent tasks. These formulas are based on the limit distributions of f-exponential
polynomials and truncated f-exponential polynomials. The total execution time can
thus be obtained exactly for small graphs and approximately for large graphs using the
approximation method mentioned above. The validity of the approximation method
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is confirmed by comparing the results of extreme value analysis with results obtained
by simulation.

2. The GIANT-Model

In the modeling and performance evaluation tool GIANT parallel programs are rep-
resented by precedence graphs. The nodes of the graphs represent the subtasks and
the edges represent the precedence relations of the program. These graph models -
referred to below as task structures - are easy to understand and so are widely used
for modeling parallel programs ([12], [10], [15]). Figure 1 demonstrates that it is pos-
sible to represent system constraints such as a limited number of processors by simply
adding nodes and arcs. Graph (a) represents the pure algorithm with inherent paral-
lelism n. The execution of the program on a parallel system with p processors leads
to structure (b). The communication between processor P, and the other processors
P;,i=2...pis indicated by the nodes K;; and Kp; (¢).

If stochastically independent random variables Xrp, T € {Ty, To, T} ...Tn,
Kip...Kpp, Koy...Kop} are assigned to the subtasks 7' of the graphs the fol-
lowing expression describes the total execution time L(G) of the graph G2:

LG = wegl%@)(% X7) (1

For example the total execution time of (a) can be calculated as

X7) = X Xt +X 2
ﬂegﬁﬁ(a)(é 7) ier{rie'l')'(n}{ 7+ X1, + Xro } “

If G is series-parallel, (1) can be transformed to an expression in which each
random variable occurs only once. All graphs in Fig. 1 are series-parallel. For example
expression (2) can be transformed to:

L(G) = XTI + max XTi +XTO (3)
i€{l...n}

The resulting expression can be evaluated in linear or polynomial time [17] by recur-
sively applying the operations convolution and multiplication on the mutually inde-
pendent subexpressions.

3. Modeling the execution times of parallel programs

Continuous distribution functions are presented in this section, which are suitable for
the description of the execution times of parallel programs if the total completion
time of the graph is to be computed in a semi-symbolic form. The following should
be taken into account when selecting such a class of distributions:

1. The evaluation is only possible if the class is closed with respect to the operations
of analysis. In particular such a class of distributions must be closed with respect
to multiplication, differentiation, integration and convolution.

2 path(G) is the set of all paths in the graph.
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Fig. 1. Transformation of a graph to represent system constraints
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2. The class must be capable of representing empirical distributions to any required
degree of accuracy.

3. The execution of the particular operations of analysis must not require excessive
computer time or memory.

Exponential polynomials EP(t) = Y7 a;t*ie it with a; € C,\; € C,k; €
N, introduced in [16] constitute a parameterized class of functions which satisfy
requirements 1 and 2 above. Sahner and Trivedi [16],[17] use exponential polynomials
to model the execution times of parallel programs and also the reliability of particular
components in parallel computers. When using exponential polynomials to model
execution times, the analysis involves a manipulation of the parameters (a;, k;, \;) of
the exponential polynomials. [15] presents the results of series-parallel operations as
a function of the parameter ¢. The number of parameter triples (a;, k;, \;) obtained
as the result of these operations increases strongly with the number of stages k; + 1.
To satisfy the third requirement above it is therefore necessary to keep the number
of stages as small as possible. However, execution times obtained in practice, often
having coefficients of variation ¢? = Var[X;]/E[X;]?> < 1, can only be represented
by a large number of stages. For example, an Erlang distribution with mean 10
and variance 1 contains 100 stages. The distribution function F(¢t) is F(t) = 1 —

g~ 2?20 )‘z,t The multiplication of two such distributions with different rates A
produces 400 parameter triples; this is unacceptable as an operand in further operations
on account of the memory requirement, processing time, and the numerical problems.
Such distributions can be represented using significantly smaller values for k; if the
translation of individual terms along the t-axis is allowed. If the Erlang distribution
with mean 10 and variance 1 above is translated by 8 units, then only 4 stages are

required to represent it.

3.1. 6-Exponential polynomials

In this section we give a formal definition of the class of §-exponential polynomials
and prove that they have the same useful properties as exponential polynomials.
A function H : R — RR§ of the form

H(t):ZHi(t) with H;(t) =

i=1

a;i(t — 8)Fie=2Ct=0) for t >,
0 for t<#,

with a; € R, A\; € Rf, k; € Ny is called a 6-exponential polynomial. The parameter
8; is called the deterministic part, a; the coefficient, \; the rate, and k; the stage.

Figure 2 shows the phase diagram of #-exponential polynomials. The parameters
¢ = azki!/ /\f“rl can be interpreted as branching probabilities, if ¢; € [0, 1]. Every
branch consists of a deterministic part followed by an Erlang distribution.

If V5 : 6; = 0 we obtain pure exponential polynomials. The translation of the
individual terms ensures that typical program execution times can be represented
using a small number of stages. In addition, the deterministic parts can be used to
guarantee minimal execution times (i.e. startup phase of a subtask). In the following
we will show that §-exponential polynomials are suitable for the manipulation on
a computer, because they are closed under the operations of analysis and they can
approximate empirical distributions to any required degree of accuracy.
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Fig. 2. Representation of #-exponential polynomials by phase diagram

It is described in [6] how Erlang distributions can be used to approximate an
arbitrary density function to any degree of accuracy. Any function f(f) can be rep-
resented to any degree of accuracy by a step function. Each step of the step function
corresponds to an Erlang-oco function, which can be approximated to any degree of
accuracy by an Erlang-n function with sufficiently large n. Thus any function f(¢)
can be represented with any degree of accuracy by a weighted sum of Erlang density
functions. Since f-exponential polynomials are an extension of the class of mixed
Erlang distributions, they can also approximate any distribution. In particular, the re-
striction of the parameters \; to the domain R{ and a; to the range R instead of the
domain C does not cause any loss of generality.

The function I;(t), which is used below, is defined as follows:

[0 if t<0
Ii(t)‘{l if t>0

E'(f(t)) is the I‘th moment of a function f(t), i. e. EX(f(8)) = [, t f(t)dt. Let H(t)
be a density function from the class of f-exponential polynomials.

Theorem 1. The moments of the density term H,;(t) are

)\k +1 Z( > l(k +m) i (4)

E'(H,(t) =

Proof.

GMQQLWﬂw
a i s 7 s=0

lal( k! —89
ds! ’( +/\)k+1

E'(Hi(t))

(=D

)ls—O
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AN 1 =i
1\, .1§ ~ —s6;
e <J) 557 Gragh g7 & o0

j=0

(k +m) l

1
a3 () Dotem)

Then the moments of §-exponential polynomials are given by the summation formula:

E'(H®) = Zal o Z < >M9H

O
The mean value of the 8-exponential polynomial is calculated as follows:
k +1 N k;!
E(H(t) = Z Ui Ak NG > (EH])+ @i S50 )
i=1 i=1 i

where H'(t) = H;(t +6;), i. e. H are terms without deterministic part. The
variance of the individual terms is not altered by the translation along the t-axis;
however, different 6, alter the total variance.

It is shown below that the closure properties of the exponential polynomials are
not affected by the translation of the exponential terms.

The operations necessary for the evaluation of series-parallel graphs, i. . integra-
tion, differentiation, convolution, and multiplication, are presented below in symbolic
form. The rules used to perform the calculations required for these operations can be
obtained directly from the theorems proved below.

Theorem 2. The class of 8-exponential polynomials is closed under integration. The
definite integral of H(t) = Y .., Hi(t) with A; > 0 is given by:

t n
/ Htdt = > Hi)
0 i=1
A = Zl_o ‘sz_' (= 0e M0 o Ry if £>6;
' o t<e,

Proof. The expression H;(t) must be derived after applying the summation rule. If
the integral of the Erlang density is assumed to be known, then:

t N los ool
/ L H, Ot = Lty ;ZZ;A oAt 9>Z“t o))
0 i

O

6-exponential terms a;(t — 6;)¥ie~*®=%) with k; € {0, 1} are discontinuous in
6;. Before we can prove the closure property of the class under differentiation, we
must explain the concept of the derivative for such terms.

Let H;(t) be a §-exponential term with k; € {0, 1}. Then the derivative H () is
defined as follows:
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, 0 in (0,6;)
H,t) =< ai(e™ =9 — Nt — 0;)e= 2%y in [6;,00) if k;=1
—a;ire M0 in [6;,00) if k;=0

Theorem 3. The class of 0-exponential polynomials is closed under differentiation.
The first derivative of a 6-exponential polynomial H(t) =Y " a;(t — g;)kie At =63
with Vie<in>As 7 0 is given by:

dH(t) _

i ZdtH(t)
_ [ Lk if ki#0
EHi(t)—{ —Li®)a e N0 if k. =0

with
h(t) = aiki(t — 0)F e =00 _ N a,(t — 9,)Riem N0,

Proof. The theorem follows directly from the summation rule and the product rule
for differentiation. O

Theorem 4. The class of 6-exponential polynomials is closed under convolution. The
convolution of two 0-exponential polynomials h(t) and H(t) is given by:

ht) @ Hit)= () Lt)ait — 0:)Fe 799 @ (Y~ Lit)A;(t — 9,)Kie~4t=00)

i=1 j=1
= Z Z H;(t)
i=1 j=1
where
0 if t<0;+6,
Hij(t) = Iij(t)Hz](t) tf )\Z_ #Aj

Ajaiki|K;! . A (t—Os .
L) gt (¢ — Okt Katle=Xt=0uw) if ), = 4,

. : _) 0 if t<Oy
with Qij = @j # 9, and IZJ(t) = { 1 otherwise
(K +
-1 ( +)a k; A K (t — ij)ki_l e*)u‘(t'@ij)

ﬁz](t) (k’ - l)'(/l — X )K i+l+1

K; z ki+l
Z (— 1) +)A K;lak;! _Qij)Kj~le—A_7(t—@ij)

(K — DI\ — Aj)kti

=0

Proof. Because of the linearity of the integration, it is sufficient to show the validity
of the formula for H;;(t). A 6-exponential term can be regarded as a convolution of
the unit impulse function uy at the position §; with the function H;(t +6;) = H/(t).

Hi(t) = uo(t — 6;) ® H; (t)

It follows that:
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H;j(t) = hi(t) ® H;(t) = uo(t — 0;) ® H (1) ® uo(t — 6;) ® hj(t).
Because of the commutativity of the convolution:

UQ(t — (@] + 91)) ® H:J(t)

Il

We use the Laplace transformation to calculate the expression H;(?).

L{H ;M = L{H;®}L{h;®)}
_ A]K_]' aiki!
= (S+ Aj)Kjﬂ (5+>\i)ki+l
Case 1: \; # A;
s Kk
L{Hi*j(t)} _ Aja, K;lk;!

(s + AHKi*l(s + Akt
We expand L{H;;(t)} as a partial fraction:

K;

L{H;®)} = Z (W—:) (@W) ls=—2,

=0

& i Ajain!ki! il 1 | i
— \Il(s+ A, Fitl=t 93t (s + Ay)fa*l | =7
H;(t) is obtained by differentiation and inverse transformation.
Case 2: \;j = A;
. 1

We obtain by inverse transformation:

Ajain 'kl'

tki+K_7'+l
(Kj + kl + 1)'

=Nyt

H(t) = e

The translation of the functions H(t) by the amount ©;; = ©; + 6;, i. . convo-

lution with the unit impulse uo(t — (©; + 6;)), produces the required result. ]

Theorem 5. The class of 8-exponential polynomials is closed under multiplication.
The product of two 8-exponential polynomials is given by:

QLA — 0% e MO " Iityai(t — ;)kie =0

7=1 1=1

Y > Hi

7=1 =1

H®h()

where
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O if t < max(f;,0;)
P 5@ if 6, >0,
B = hé(t) i 6; >0,

hz](t) lf @]zgz

K;

K, L —AB—O. L Out A0

hfj = Z ( lJ>Ajai(9i — Qj)K] le—A;(0: @])(t _ gi)kﬁ-le Ni+A5)(t—05)
1=0
k.

hg _ Z ( ;)Ajai(@j . ei)k.L—le—~)\l(9]—91)(t _ @j)K]+le—(A]+)\1)(t—93)
1=0

’L](t) A, (Zl(t - j)Kj+kie'(Aj+/\i)(t—@j)

Proof. First we prove the validity of he(t) and hY, (). Without loss of generality we
can assume that ©; > §;. We perform a translatlon of the terms along the t-axis by the
amount —@;, i. e. H*(t) Hi(t + ©;) and multiply the resulting functions H}, H.

H;H; (A;t%ie™ 43 (ai(t + (O — 0;))Fie™(+(O5=6:))

k.
~ (k; . 0. K A
Z <l )Ajai(@j g,k lem MO =00 Kl o~ ik At
1=0

The required result is obtained by translation by the amount +©;. The formula h;;(t)
for ©; = §; can easily be derived in the same way. O

3.2. Truncated 6-exponential polynomials

In reality the execution times of the subtasks of a parallel program are bounded.
We will show in Sect. 4 that this behavior must be taken into account, when mod-
eling massively parallel programs. Thus, we need a class of distributions, which
are suitable for the manipulation on a computer and also have finite domain. Trun-
cated f-exponential polynomials have these properties as we will show. Truncated
f-exponential polynomials (H,,) are functions of the following form:

n 0 if t<6;
Hy(t)=¢> Hit), Hit)=< ailt —6)fe X0 if 9, <t<w
i=1 nig if t>w

Wlthgzm aiER /\GIRE,/CENO,HG]Randew>¢9

The integration and differentiation of individual terms has of course, no effect on
the domain of these terms. The combination of two truncated #-exponential polyno-
mial terms produces a quantity with the domain [8, w]:

convolution: 0=0,+6,, W= wy +ws.
multiplication: 8 = max{6;,6,}, w=min{w;,w,}

The values of the terms are calculated inside the interval [6, w] using the relations
which were derived in Sect. 3.1 for non-truncated exponential terms. It is also possible
to approximate any empirical density function by a truncated #-exponential polynomial
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to any required degree of accuracy. A proof of this statement is only given here in
outline. We consider an empirical density function D; which takes non-zero values
only in the interval [d}, d>]. The problem of fitting a #-exponential polynomial to the
density function D, is reduced to the fitting of a normal exponential polynomial to the
empirical density function D; in the interval [0, d, —d;] by the assigning Vi : §; = d;
as well as the translation of the density function D) to the interval [0, d, — d;]. After
fitting an exponential polynomial EP to the density function D, with the required
accuracy, we consider the difference surface AD in the interval (d; — d;, 00]. AD
is calculated as AD = f dd; EP(t)dt. This surface is distributed over the domain
[0,d; — d;] by the normalization when truncating the exponential polynomial. This
certainly does not lead to an increase in the total error. The maximum deviation
| max{EP(t) — D,(t)|t € [0,d, —d;]}]| is at most increased by the factor —5 AD Thus
an arbitrarily small error boundary also can be satisfied for a truncated 6- exponentlal
polynomial by a suitable choice of the error boundary when fitting the exponential
polynomial.

4. Evaluation of a large number n of parallel subtasks

Many parallel applications consist of the iteration of the parallel execution of n
independent subtasks. Examples include the solution of linear equations of partial
differential equations, search and optimization problems and simulation [8]. In our
investigation we focus on the case of global synchronization, where all tasks on an
iteration step have to wait for the termination of all tasks on the previous step.

We examine the core of this fundamental structure, i.e. the parallel processing
of n independent subtasks, which is included in Fig. 1a. Assuming that the distri-
bution function of the execution time is the same for all subtasks and processors,
and that there are sufficient processors for all subtasks to be executed in parallel,
we have to calculate the distribution function of a random variable M,, = Xmax
=max{X,,...,X,} where X, are identically distributed random variables with dis-
tribution function F(¢)3. Let

Frnax(t) = (F (@)™

The exact calculation of F,4;(f) is not possible for a large value of n because of
numerical inaccuracies and memory requirements. Thus, we use extreme value theory
to derive approximate formulas. We base our investigations on the following theorem,
which is proven in [14]*.

Theorem 6. If o, > 0, B, € R, n > 1 exist, such that

B [<Mn — Bu)
Qn

< r] = F"(a,z + 3,) — G(z)

for n — oo, then G is of the form (1), (II) or (III).

3 Xmax is also represented by M, here, in accordance with the literature used, e.g. [14]. Also p and o
are used to represent the mean and variance, respectively

4 [14] is given as the source of various theorems below. However, the theorems are not always to be
found there in exactly the same formulation. Some theorems have been reformulated for our purposes,
to avoid introducing an extensive mathematical apparatus as Resnick does, for example, including von
Mises functions. However the fundamental contents of the theorems have been kept, and we have
adhered to the notation from [14] as closely as possible.
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(1) Alx) =exp(—e™®) for z€R

0 for <0

enl—a®) Tor &% forone a >0

()  Pu(z)= {

_ [ eap(=(=)*) for z <0
(1) Wa(w)—{ 1 for >0

We write below F' € D(G) if there exist normalizing constants o, > 0, 3, € R
such that for n — oo:

forone o > 0.

Fn(anx +0n) = P[IM, < apz+ Brnl = G(z).

Y, (x) is a reflected Weibull distribution and is -also called type-III extreme value
distribution [14]. A(z) is also called the Gumbel distribution or the type-I extreme
value distribution (see [19]). xg is the “right-hand end” of the distribution function F';
i.e. zo = sup{y : F(y) < 1}. The following assertions can be made about the possible
distributions for the limiting cases:

a) If F € D(W), then 2o < oo .
b) If F € D(®), then o5 =00 .
¢) If F e D(A), then xg < 0o or g =00 .

It is shown in Sects. 4.1 and 4.2 by comparing the limit distributions of #-
exponential polynomials and truncated #-exponential polynomials that the choice of
distribution class for the execution time of subtasks has a decisive influence on the
distribution of the overall execution time of massively parallel structures, even when
the initial distributions barely differ in the shape of the density.

4.1. Limit distribution of 6-exponential polynomials

The following theorem, which is also taken from [14], is useful for determining the
limit distribution of #-exponential polynomials and the values of s, and (3,,.

Theorem 7. Let zy < xo be arbitrary but fixed. If

a) F'is absolute continuous in (zy, o), possesses a negative second derivative F i for
all z in this range, and
Fl@(-F@) _ _

b) limg_,, FE0=F

then F' € D(A). The parameters can be determined by the formulae:
B = ()" ) ®)
B =P, A

1-F
Qp = (T)(ﬁn) (7

Thus, it can be shown that limit distributions from the class of #-exponential polyno-
mials are Gumbel distributions, i.e:

Theorem 8. If F' € H then F € D(A).
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Proof. The proof of this statement is given in [3]. O

Note 1. Since in this section we are only interested in §-exponential polynomials as a
means of describing the execution times of parallel programs, we shall assume below
that f-exponential polynomials are distribution functions or density functions from
the class of f-exponential polynomials.

Thus, we know the limit distribution F™(t),n — oo of f-exponential polynomials’
lim (F(ant+ B,)") = Gplant + 8r) = efp('e_t)
n—oo

We must next calculate the parameters «,, and (3,,. The parameters o, and 3, can-
not be exactly determined analytically for a general F'(t) € H. Rearranging equation
(6) as

1
(1-F)Brn)——-=0
n

leads to the problem of determining the zeroes of f-exponential polynomials. Nu-
merical methods can be used to determine the values of 3,. Since the distribution
function F' € H increases monotonically in the range [min;{6;}, co], efficient nu-
merical methods can be applied.® Besides determining the parameters o, and 3, by
finding the zeroes of equations, it is also possible to derive the parameters analytically.
The following is proven in [3]:

Theorem 9. If F' € H, then

1 .
B = W(ln n+ k™ ninn+ina™ — (1 + k™) (In \@DY)) (8)

is a suitable value for the normalization constant (3,, where

n
91‘ }\(min}
Q(m) = E a;€
i=1

k; =k (max)
X ;=A(min)

It is easy to calculate o, using equation (7) when (3, is known.

o = L= F(Ba)
5T B

There are simpler equations for calculating the parameters «,, and 3, in various
special cases of the f-exponential polynomials’.

Exponential distribution:
1 Inn
=5 fa=—

3 Since mixed Erlang distributions and Cox distributions with real coefficients are special cases of
0-exponential polynomials, we can deduce directly that all the phase-type distributions with real
coefficients belong to class D(A), i.e. their limit distribution is the Gumbel distribution.

© For our purposes the simple, though in general, slow method of bisection is adequate.

7 Since it is sufficient to satisfy the asymptotic exactness of the determining equations, it is possible
that there are other formulas which can produce tighter bounds; e.g. it has been found that for Erlang
distributed random variables it is better to neglect the contribution of the term (—In(k!)) which was
originally present.

®
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Erlang distribution:

1 1
anzx ﬂn=x(lnn+klnlnn) (10)
6-Exponential polynomials with V(: =1,...,n): 0, =0:

1
\(min) fn = )\ (min)

Oy = ——(nn+ k" ninn)+0 ¢8))
It follows from [14], proposition 1.1 and 2.1, that the extreme value distribution to
which F'(¢)™ converges is known, and also that the moments E7(F(t))") converge to
the corresponding moments E7(G,,(t)). The following formulas give the mean value
E(G,) = ui,, and the variance Var(G,) = 0% of the Gumbel distribution (see [13]).

n = ﬂn +any (12)
ol =ad26 (13)
Here « is the Euler constant
"1
v= lim v, ~ 0.577216, Y=Y = —Inn (14)
n—oo im1 ?
and
) 2 2l
6= lim 8, =, Z;_z (15)

In the special case where the distribution is exponential (F(t) = 1 — e™*?) it
follows from (12), (13), and (9) that

1 1
o, = X(lnn+'y), o2 = ﬁé. (16)

It is interesting that the replacement of v by «, and é by 6é,, leads to the exact

results
11 RN
T IR N B 3.
i=1 i=1

These are proven, for example, in [9] or [7].

The estimation functions 9 - 11 have been tested for particular distributions, to ob-
tain an impression of the convergence behavior of the exact results and the asymptotic
approximations. Simulation results are also presented for comparison.

In Fig. 3, p, is an upper boundary for the expectation of the maximum of n
independent random variables with identical distributions. It can be seen that this
formula provides a very good estimate of the mean value for small n (n < 10). This
boundary, which is independent of the distribution, is derived, for example, in [2].

It emerges that the estimated values for the expectation agree very well with the
values obtained by simulation when the numerical values of the parameters o, 3, are
obtained by calculating the zeroes of the exponential polynomial. If the distribution is
Erlang, the parameters «,, and 3, can be estimated successfully using formula (10).
The general approximation formula (8) is only suitable for small n (n < 100) if there
is a dominating A This follows from the fact that all other )\;, independent of the
number of stages (k; + 1), are neglected when calculating the parameters.

Ml"‘

a7)
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5 e
4 —
E[] 3 -
X; <~ ERL(2,1)

2 —

—a— upper boundary pun, = p + \/’%Vaz

—=— 3, from the formula (10),an = (1 — F(8x))/F (8n)
1~ —*—  numerical inversion

——  simulation
o I I l | | | L

0 2 4 6 8 10 12 14

Number of subtasks n
Fig. 3. Mean value of the total execution time for a parallel structure

4.2. Limit distribution of truncated 6-exponential polynomials

Because realistic run-times of parallel subtasks are finite, they are better represented
by distributions with a finite domain. We use truncated #-exponential polynomials to
examine the effects of assigning distributions with a finite domain to the subtasks of
massively parallel structures (Number of subtasks n > 100).

The following theorem provides information about the limit distribution of random
variables with finite domain (zy < o0). The proof is given in [14].

Theorem 10. Let D(¥,,) be the set of distributions F whose extreme value distribution
G is of type (I1l). If the distribution function F' has a right-hand end point (o < 00),
is absolutely continuous in a neighborhood at the left of xo, has a positive density F '
there, and there exists an o > 0 such that

. (10~ D)F ()
1 = 18
soge 1—F@ O (8}
then F' € D(W,). The parameters are determined by the equations
T
Qn =20 — (ﬁ) (n),
Bn = Zo- (19)

It is important that the asymptotic mean and the variance of distributions F' € D(¥,)
be given by:
Moo = To
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1.4
Number of subtasks
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Fig. 4. Comparison of the parallel composition of distributions with infinite and finite domain
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05,=0

In general it is true that

F e D(W,) — lim M, = zo,
n—oo

where limT means the almost sure convergence [14].

Interesting consequences for the modeling and analysis of parallel programs follow
from the fact that different extreme value distributions occur, depending on the domain
of the initial distribution. We use the class of truncated #-exponential polynomials to
demonstrate the consequences more clearly. The limit distribution of the truncated
#-exponential polynomial is the Weibull distribution, i.e.:

Theorem 11. If F' € H,, then F € D).

This is proven in [3].

Figure 4a shows the densities for the maximum of random variables with Erlang-
2 distributions with parameter A = 1 for different numbers of parallel subtasks 7.
Figure 4b presents the results for corresponding truncated Erlang density functions
with w = 7. Although the shapes of the Erlang and truncated Erlang densities, f(t)
and f,,(t), are almost identical (Fgrr2,1)(7) = 0.9927), the resulting density functions
fx,ert and fx ., diverge even for small values of n. This effect is demonstrated in
Fig. 4c in more detail.

This indicates, that the use of distributions with infinite domain is only acceptable,
when the degree of parallelism (i. e. n) is very low. Distributions with finite domain
are needed to model massively parallel systems.

5. Conclusion

In this paper we addressed the problem of accurate representation of the task execution
times, when modeling parallel programs by task precedence graphs.

We introduced a generalization of exponential polynomials that enables the effi-
cient representation of typical task run-times with a small number of stages k;. This
extension increases the efficiency of calculations and reduces the numerical problems
for the evaluation of series - parallel graphs. Additional advantages of truncated 6-
exponential polynomials are the possibility to combine deterministic and stochastic
execution times and to guarantee minimum as well as maximum execution times.
We showed that this new class of distributions has the closure and approximation
properties required for accurate and efficient evaluation on a computer.

We then used #-exponential polynomials and truncated 8-exponential polynomials
together with theorems from extreme value theory to derive approximations for the
distribution function and the mean and variance of the total computation time of
massively parallel structures. The comparison of the approximations with results from
simulation showed the accuracy of our formulas

Finally our survey provided the insight, that the use of distributions with infinite
domain is only acceptable, when structures with a very small degree of parallelism
are modeled. Distributions with finite domain are needed to model massively parallel
systems.
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