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Abstract

Modeling parallel programs can help the developer during the design phase of a
particular implementation on the one hand and on the other hand provide principle insights
which are needed to establish design principles for the development of parallel programs. It
is important that the model used provides a sufficient but not too detailed representation of
the parallel program.

Precedence graphs provide an easy to understand representation of the structure of
parallel programs. Information about the behavior of parallel programs during execution
can be obtained by assigning distributions of the execution times of the subtasks to the
nodes of these graphs. |

In this paper we introduce truncated 8-exponential polynomials as a class of distributions
suitable for the modeling of task run-times of massively parallel programs. As opposed to
classical exponential polynomials known from literature, truncated @-cxponential polynomi-
als allow the representation of distributions with finite domain and are therefore appropri-
ate for the analysis of massively parallel systems.

We present approximation formulas which allow the approximate calculation of the total
execution time for large models in particular. We provide formulas for the parallel
cxecution of a large number of subtasks. We also give a method to estimate the total
execcution time of regular graphs, which are also very important in the field of modeling
parallel programs.

* Corresponding author.

0167-8191,/94 /507.00 © 1994 Elsevier Science B.V. All rights reserved
SSDI 0167-8191(94)00049-G




1584 G. Fleischmann et al. / Parallel Computing 20 (1994) 1583-1603

Keywords: Parallel computing; Performance analysis; Modeling; Precedence graph; Expo-
nential polynomial; Massively parallel system; Extreme value distribution; Static scheduler;
Dynamic scheduler; Regular structure

1. Introduction

The primary reason for employing parallel user computations 1s to reduce the
overall processing time of problems which require a large amount of computation.
Therefore, the processing time of parallel programs is an important criterion when
choosing a particular implementation. During the development phase of a parallel
program, information about the execution times can only be obtained from
calculations based on models. Another reason for modeling parallel programs is to
develop principle insights, which are needed to establish design methodologies for
the development of parallel programs.

The analytical investigations presented in this paper werc part of the
SUPRENUM project. Such analytical investigations enable the quantitative per-
formance analysis already during the design phase of multiprocessor systems like
the SUPRENUM. For this reason a part of the SUPRENUM project was devoted
to the modeling and performance analysis of parallel systems.

In this paper we deal with the performance prediction of large parallel pro-
grams. We introduce a new class of distributions for the representation of task
run-times which is especially appropriate for the modeling of massively parallel
systems. In Section 4 we present approximation formulas for massively parallel
systems and in Section 5 approximation formulas for the mean execution time of
iterative structures are developed.

Precedence graphs are the most appropriate tool to use when representing the
functional structure of parallel programs. This is especially the case when one 1s
interested in the principle investigations which are performed in Section 4 and
Section 5 of this paper. The nodes of precedence graphs represent the subtasks of
a parallel program and the edges represent the precedence relations between
these subtasks. Precedence graphs are very popular because of their comprehensi-
bility and are used by many authors [1-5].

The exact execution times of the subtasks of the distributions of these execution
times must be known in order to be able to represent the behavior during program
execution with precedence graphs. We will show in Section 3 that phase-type
distributions such as exponential, Erlang or hyperexponential distributions, which
are often used in performance evaluation, are not appropriate for the representa-
tion of typical task run-times. This is due to the fact that typical task run-times are
characterized by a small coefficient of variation and thus need a large number of
phases to be described by phase-type distributions. The class of distributions
presented in this paper makes not only the efficient representation of typical task
run-times possible, but also the guarantee of an upper limit for the execution time.
This latter property is especially important in the modeling of massively parallel
programs, as we will show 1n Section 4.1.
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In Section 4 we investigate a fundamental structure in the field of parallel
computing: The parallel execution of independent subtasks of a parallel program.
We present approximation formulas for the case in which the number of available
processors is unlimited. These formulas are based on the limit distributions of
f-exponential polynomials and truncated #-exponential polynomials. When the
number of processors is limited we have to define a strategy according to which the
tasks are assigned to the available processors. We distinguish between static and
dynamic scheduling and derive approximation formulas for both cases. Using these
formulas we show that the dynamic scheduler causes shorter execution times when
communication times are disregarded but may cause longer times when communi-
cation has to be taken into account.

Often a parallel computation consists of stages in which the tasks can be
executed concurrently, Between the tasks of one stage there is no communication
or synchronization and the precedence relations between two successive stages
obey the same pattern. In Section 5 we define the class of regular graphs, which is
used to represent this kind of computations. The investigation of numerous
examples leads to the assumption that the expectation of the total execution time
of such graphs grows by a fixed value whenever a new stage is added. Using this
stationarity of regular graphs it is possible to analyze large task structures by the
extrapolation of results for small graphs.

2. Modeling of parallel programs

Modeling techniques for the performance evaluation of parallel systems can be
devided into four main classes: Fork-join queueing networks, timed Petri nets,
precedence graphs and combinations of two or more of the aforementioned classes
(see Fig. 1.

Fork-join queueing networks are classical queueing models extended by addi-
tional constructs used to model splitting (fork construct) of one task into several
subtasks which can be computed concurrently and to model merging (join con-
struct) of multiple subtasks into one [6,7]. Fork-join queueing models are mainly
used for the analysis of parallel tasks, which are repeatedly processed by the same
hardware.

With timed Petri nets [8] the possibility of a detailed representation of the
structure of a parallel, program can be provided, as well as a detailed description
of the hardware which is used to process the program. The main disadvantage of
Petri nets is that even small problems lead to large and complex models. Petri nets
are very important for the modeling of hardware and operating system properties
but precedence graphs are more appropriate when the point of interest lies in the
properties of application programs.

Precedence graphs — referred to below as task-structures — are easy to under-
stand and are thus widely used for modeling parallel programs [1-5,9,10]. The
nodes of precedence graphs represent the subtasks of a parallel program. The
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Py
\Y/ Timed Petri Net
@ () ()

Fork-Join Queneing Network
Precedence (Graph

Fig. 1. Model classes for parallel programs.

dependencies between the subtasks are modelled by the edges of the graph.
System constraints such as a finite number of processors or communication
requirements can be taken into account. A simple example is shown in Fig. 2.

(a) (b) ()
Fig. 2. Examples of precedence graphs.
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Graph (a) in Fig. 2 is the model of the parallel algorithm. Graph (b) is obtained
by assigning the subtasks to the processors P, and P,. The communication
requests are modelled by the nodes K, and K, in graph (c). If random variables
are assigned to the subtask execution-times, then the total execution time of the
program can be calculated. It corresponds to the time required to traverse a
directed acyclic graph.

In the performance evaluation tool GIANT ! several exact analysis methods
have been provided which can be used to predict the total execution time of small
to medium sized task-structures. But the size of models which can be analyzed by
exact methods is limited due to memory constraints and numerical inaccuracies.
To predict the behavior of systems with a large number of subtasks we need
approximation formulas. Such formulas are presented in Sections 4 and 5.

GIANT can be used to investigate both series-parallel graphs and more general,
non series-parallel graphs. The advantage of series-parallel graphs is that the time
needed to analyze them is linear or polynomial [11]. The analytical operations of
convolution, multiplication, addition, integration, and differentiation, applied to
the distribution function, are sufficient to compute the total execution time. If T},
T,,..., T, are nodes of a directed acyclic graph with independent random variables
X,, X,,..., X, and distribution functions Fy, Fy ,..., Fyx , then:

(a) The value X, obtained from the serial arrangement of T, T5,...,7T, is

S n

X, ym = 7_1X; with the distribution function

i=1""

Frum(1) =£(®ELIEFEI(I)] dx

where ® is the convolution operator.
(b) The value X__ of the parallel arrangement of Ty, 75,...,T, 18 X .=

max H max

max, _, .4 X;} with the distribution function F_,(#) =TI}, Fy(2).

Classes of functions which are closed under these operations, and are thus
particularly suitable for modeling distributions of execution times using computers,
are presented 1n Section 3.

If pure graph models are used it is possible only to model static scheduling
mechanisms and communication strategies. The appropriate parameters are in-
cluded in the model on which GIANT is based so that dynamic allocation

strategies can also be described [12].

3. Modeling the execution times of parallel programs

In this section we describe classes of continuous distribution functions for the
description of the run-times of parallel programs. These classes of distribution

! Graphoriented Interactive ANalysis Tool.
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functions make the computation of the total execution times of graph models in a
semi-symbolic form on a computer possible. Qur goal is a class of distribution
functions which is particularly suitable for the representation of typical task
run-times and which makes the efficient calculation of the total execution time of
parallel programs possible.

Sahner and Trivedi introduced the class of exponential polynomials EP(t) =
Tr ,athie™* with q,€C, A,€C, k;€N to model task execution times in
series-parallel task graphs [4,11]. Exponential polynomials can be represented by
their parameter triples (a;, k;, A;). Phase-type distributions, such as exponential,
Erlang or hyperexponential distributions, which are often used in the field of
performance evaluation of hardware architectures and operating systems, can be
represented by exponential polynomials. For example the distribution function
F(t)=1—e " of an exponential distribution can be described by the two param-
eter triples (1, 0, 0) and (1, 0, A). Because exponential polynomials are closed
under the operations which must be performed to analyze series-parallel graphs,
the results of these operations can also be represented by a set of parameter-tri-
ples. This latter fact makes the calculation of the total execution time of task-graphs
in a semi-symbolic form on a computer possible. We demonstrate this with the
following example, in which the distribution function F,,(f)=1—e M —e "'+
e M TA) of the maximum of two exponential distributions with distribution
functions F, (¢) and F, (¢) is computed:

£ (1) F, (1) Bax(E)

(1,0,0) (1,0,0) (1,0,0)

(1,0,A,) (1,0,4,) (—=1,0,4,)
(=1,8,4:)
(1,0, A, +1,)

Even this small example indicates that the mumber of parameters increases
drastically when the operations are performed. Task execution times typically have
distributions with small coefficients of variation which can only be represented by
exponential polynomials with a large number of parameter triples. The effect of
performing the analysis operations on such exponential polynomials is disastrous
because the number of parameters increases drastically.

The class of #-exponential polynomials introduced in the next section makes the
representation of typical task run-times by a small number of parameters possible,
and is thus more appropriate in the modeling of parallel programs than pure
exponential polynomials.

The task execution-times of parallel programs are limited. Exponential polyno-
mials and #-exponential polynomials are distributions with infinite domains and
thus cannot represent this observed behavior. In Section 3.2 we introduce the class
of truncated -exponential polynomials which have finite domains. We will show in
Section 4.1 that only distributions with finite domains are appropriate for the
modeling of massively parallel programs.
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3.1. B-expornential polynomials

The extension of the class of exponential polynomials mentioned in the previous
section is presented in greater detail in this section. A function H:Rj— R; of
the form

a,(t—0)% =% for >0,
0

H(t)= )Y H(t) with H(t)= for ¢<8.

i=1
with a,€R, A,€R;], k,EN,, 6,€R is called a f-exponential polynomial. The
parameter 8; is called the deterministic part, a; the coefficient, A; the rate, and k;
the stage.

If the parameters c, = ak;!/A%*" are all positive and the 8, are all zero, then
we obtain the well-known representation of generalised Erlang density functions,
sometimes referred to in literature as mixed Erlang distributions, e.g. in [13]. In
general the parameters ¢; can be any real number. If the value ¢; is outside the
interval [0,1] it can no longer be interpreted as a branching probability. Neverthe-
less #-exponential polynomials can be represented by the well-known phase
diagrams, as shown in Fig. 3, in which O represents an exponential phase and O
represents a deterministic part.

The class of f-exponential polynomials is obtained by translating the terms of
exponential polynomials by an amount 8,. The translation of the individual terms
ensures that program execution times occuring in practice can be modelled using a
small number of stages. In addition, the deterministic parts 6, can represent
minimum execution times of subtasks. The linear combination of the terms using
real weights ¢; guarantees that the class of functions is closed under the operations
of analysis. The closure properties are shown in [14].

3.2, Truncated @-exponential polynomials

A consequence of modeling execution times by distributions with infinite
domains is the lack of an upper bound for the execution times. However, this

1 By 41
OO

€1 1 kp 41
@

1 ko +1
T

Fig. 3. Representation of #-exponential polynomials by phase diagram.
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contradicts the observed behavior of programs. It follows that, when modeling
program execution times, it is more realistic to use distributions with finite
domains than distributions with infinite domains. It is shown in Section 4.1 that the
choice of the distribution class has a decisive influence on the distribution function
of the execution time of massively parallel programs.

The @-exponential polynomials discussed in Section 3.1 have the following
useful properties; they are closed under the operations of analysis and every
empirical distribution can be approximated to an arbitrary degree of accuracy by a
#-exponential polynomial. It can easily be shown that truncated 6@-exponential
polynomials also have these properties. Truncated §-exponential polynomials (H,)
are functions of the following form:

0 if £ <8,

(1 —6)5e M0 ifg <t<w

H,(1) =L H(1), H(o) = 1"

=k — ifr>w
ng¢

with &= ,4;€ER, A;€R], k;€N,, 6;,€R and Viiw>6,.

Ll H(w)

4. Investigation of massively parallel systems

A typical task-structure in the field of parallel processing is the iterative
execution of independent subtasks. A new step of the iteration cannot be begun

Fig. 4. Fundamental structure of parallel computations.
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until all tasks of the previous step have been completed, as shown in Fig. 4
(barrier synchronization). Such structures occur in the solution of linear equations
of partial differential equations, in search and optimization problems, in simula-
tion, etc. [15].

The core of this fundamental structure, the parallel processing of # indepen-
dent subtasks, is investigated in this section. In Fig. 4, each row of the graph
represents one such composed task. There are n subtasks to be executed and there
are no dependencies between them. The distribution function of the execution
time is the same for all subtasks and processors. In Section 4.1 we study the case in
which the number of processors is not restricted while in Section 4.2 different
scheduling strategies are investigated.

4.1. Unlimited number of processors

In this section we investigate the execution of independent subtasks of parallel
programs under the assumption that there are sufficient processors for all subtasks
to be executed in parallel. From a statistical point of view the problem lies in
determining the distribution function of the random variable X_, =
max{X,,..., X,) where X, are identically distributed random variables with distri-
bution function F(z). Let

Faa(£) = (F(1))"
be the distribution function of X .

It is relatively easy to compute exactly the distribution function F,_ (¢) for small
values of n. As the number of subtasks increases, the amount of work involved in
calculating the overall distribution function and the moments greatly increases
when modeling execution-times of subtasks with phase-type distributions. How-
ever, using results from extreme value theory (see e.g. [16]) it is possible to derive
easily used approximation formulas for F, () and for the mean value.

It is shown in Sections 4.1.1 and 4.1.2, by comparing the limit distributions of
#-exponential polynomials and truncated #-exponential polynomials, that the choice
of distribution class for the execution time of subtasks has a decisive influence on
the distribution of the overall execution time of massively parallel structures. This
is the case even when the initial distributions barely differ in the shape of their
densities.

4.1.1. 8-exponential polynomials

The limit distribution of 8-exponential polynomials is the Gumbel distribution
(see [14]). Using this fact, and results from [16] and [17], the following approxima-
tion formulas can be derived for mean u, and variance o,” of the maximum of n
random variables, if their distribution functions are #-exponential polynomials:

lu".!:r:BH +aﬂ‘y? (rﬂz=a36 (1)
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Here v is the Euler constant y = lim,, _, .y, = 0.577216, v, = X7_, (1 /1) —In n and

fe=1

8 = 72 /6. The normalizing constants «, and B, are given by *:

R B @

1-F
@, = |~ | (B2) 3)
The values @, and B, cannot be exactly determined analytically for a general
#-exponential polynomial, Rearranging Eq. (2) as:

1
(1-F)(8,)— =0

leads to the problem of determining the zeroes of @#-exponential polynomials.
Well-known numerical methods can be used to determine the values of 8,,. In [14]
an approximate formula for 8, for general f-exponential polynomials is given. «,,
can then easily be calculated when (3) is used. Here we give some simpler
approximate equations for special cases of f-exponential polynomials:

Exponential distribution:

1 In n
=7 Bn=—" (4)
Erlang-k distribution:
1 1
@, =~ ,8"=I(Inn+kln In n) (5)
0-exponential polynomials with Y(i =1,...,n):0,=6:
Xy = i) B.= ﬁ(ln n+k™ Inln n) + 6 (6)

The estimation functions 4-6 have been tested for particular distributions to get
an idea of the convergence behavior of the exact results and the asymptotic
approximations. Simulation results are also presented for comparison.

In Fig. 5, u, is an upper boundary for the expectation of the maximum of »
independent random variables with identical distributions. It can be seen that this
formula provides a very good estimate of the mean value for small n (n < 10). This
boundary, which is independent of the distribution, is presented, e.g. in [18].

Fig. 5 shows that the estimated values for the expectation agree quite closely
with the values obtained by simulation when the numerical values of the parame-
ters a, and B, have been obtained by calculating the zeroes of the exponential

2[1,/(1= F)]~! denotes the inverse function and not the reciprocal of 1,/(1— F) here.
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T
$
6 - 1]
5
4
E[] X, ~ ERL(2,1)
3 -
A upper boundary g, = u + -‘722;1_—1\9’ o2
2 B— . from the formula (5),as = (1 — F(8,))/F (8.) =
—— numerical inversion
1 -©— simulation -
o ! ! L L 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Number of subtasks n

Fig. 5. Mean value of the total execution time for a parallel structure.

polynomial. If the distribution is Erlang, the parameters «, and B, can be
estimated successfully using formula (5).

4.1.2. Truncated 8-exponential polynomials

We discuss below a phenomenon which must be taken into account when
modeling execution times of massively parallel computations (# > 100). In this case
the use of distributions with finite domains is more realistic than the use of
distributions with infinite domains when modeling program execution times. The
truncated #-exponential polynomials were presented in Section 3 as an example of
a class of distributions with finite domains. The limit distribution of the truncated
-exponential polynomials is the Weibull distribution (see [14]). It is important that
the asymptotic mean and variance of distributions, which have a Weibull distribu-
tion as their limit distribution, are given by:

Moo :xﬂ
O-'xz = 0!

where x, is the right-hand end-point x,=sup{y: F(y) < 1} of a distribution with
distribution function F. Interesting consequences for the modeling and analysis of
parallel programs follow from the fact that different extreme value distributions
occur, depending on the domain of the initial distribution. We use the class of
truncated #-exponential polynomials to demonstrate the consequences more clearly.

Figs. 6, 7 and 8 show the nature of the convergence of the maxima of
independent random variables with identical distributions. Fig. 6 shows the densi-
ties of the maximum of random variables with Erlang density function frr; 1y
Truncating fzg; o, at @ leads to the density function f,(£)=1,,(tX1/
Ferrea(@Dferien(t), where Fpp o, is the distribution function corresponding
t© frrreiy fow(?) is the indicator function with Iy, (t) =1 if r€ [0, @] and
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1 I T I T I I
1.4 -
1.2 =l
Number of subtasks
n=1,2,10,50,100,200
¥ F(7) = 0.9927 -
X; ~ ERL(2,1)
0.8 - .
1(t)
0.6  n=l n=200 il
04 - l -
0.2 =
0 1
0 2 4 6 8 10 12 14

t

Fig. 6. Parallel composition of distributions with infinite domain.

Iy, =0 else. Fig. 7 shows the densities of the maximum of random variables with
density f,, with @ = 7. It is particularly interesting that Fgp, , ,,(7) = 0.9927; i.e. in
the graphical representations of the density functions f(¢) and f, (¢) the two curves
are very close. Fig. 8 shows that the resulting density functions fy,, and fy_,
begin to diverge even for small values of n. This leads to the result, important in
modeling, that, although they are nearly equal at the beginning, the distribution
functions of the total execution time approach different extreme value distribu-
tions, depending on the distribution class. In general it is true that the use of
distributions with infinite domains is acceptable when the subtasks are executed

Number of subtasks
n =1,2,10,50,100, 200
X; ~ ERL(2,1)

w=T —

F(t)

Fig. 7. Parallel composition of distributions with finite domain.
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L T T AT | T T T
|
|
na | : n = 100 —
1
1
06 : n
1(t) |
0.4 | : m
0.2 7
0 L .
0 2 4 6 8 10 12 14

Fig. 8. fy opt (xg =) versus Fy  (x,="T7).

serially, but the assignment of the right-hand end-point x, = sup{y : F(y) < 1} has
a decisive effect on the result in massively parallel structures (z = 100) and is
thus of crucial importance in the modeling.

4.2. Limited number of processors

In this section we focus on the case in which the number of processors is less
than the number of subtasks which can be computed in parallel. Thus the
execution time is not only determined by the task structure but also by the
scheduling strategy. We compare static and dynamic scheduling with or without
respect to communication overhead. Proofs for the formulas given in this section
can be found in [14].

4.2.1. Static scheduling without communication overhead

We assume that the execution times of all tasks are independent, identically
distributed random variables. Thus the tasks are distributed equally among all
processors and therefore we can use the task structure in Fig. 9 as a model. Each
column in (b) corresponds to the execution of all the tasks on one processor.

When the value n/p increases the distribution of the exccution time for one
column tends to a normal distribution according to the Central Limit Theorem.
The total execution time of the task structure tends to a Gumbel distribution (see
[16] and [14]) and from that we can derive the following approximation formulas
for the mean execution time w, , and the variance ;7 :

n,.pr
n n l1{Inln p+1ndxw 1
=—p+q/—c?{y2Inp — = +
o p'u \' po- ( 4 2( V2In p ] V2In p ¥
72 n
2 2 7
On.p 12plnpg’ (7)
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Fig. 9. Model for static scheduling.

where p is the mean and o? is the variance of the execution time of one subtask.
The approximation for the mean value is also derived in [19]. (7) cannot be used
when the number of processors p is large, because then the number of columns in
Fig. 9 is also large. As shown in Section 4.1 we then have to take into account that
the task execution-times are limited.

4.2.2. Dynamic scheduling without communication overhead
In this section we assume that the tasks are assigned to the processors according

to a dynamic scheduling strategy during and not before program execution. When
a processor becomes available it is assigned the next task which has not already
been processed. Assuming that the task execution-times are all distributed expo-
nentially we can easily derive the following formula for the total execution time:

n—p
Xgpe = L min{X{, XP,..., X} + max{X,, X,,..., X,)

b
i=1

and

l1{n-p Z£ 1 1{n—-p 21
= — + — gl =— + e '
Men.p A ( p ,’E i ] n.p )"2 ( p2 1‘; I‘Z

This exact result only holds for exponentially distributed run-times of the subtasks.
If the task execution times are not distributed exponentially we can give the
following bounds for the total execution time:

1 1 : . .
X!ower = ;ZX: ng_vn Xupper = ;ZXJ T max[Xl(”’ X?(.!)S Y X[EQI] ZXdyn
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Fig. 10. Mean value: Static and dynamic scheduling.

Taking expectations we get:

E[X,,..] = % <E[X,,] < % + E[max{X{(", X, x",}]

= E[Xuppe.r]
The variances of X,,,,, and X, are calculated as follows:
2 e 2 " (M y Q)
o*fowﬂz?o orupper=?+Var[max{Xl , X5 """Xp—l}]

X;4eqt in defined as that point of time at which a single processor with the same
performance as all p processors together would complete the task. If we assume
that at this point of time half of the processors have completed their work and the
remaining processors have completed half of their last subtask we get the approxi-

mation:
XF) Xf(p—l)/Zi
max
2 2

R
Hiyn = ? +E

Fig. 10 shows the mean execution times for different numbers of subtasks.
There are 10 processors and the execution times of the subtasks are Erlang-2
distributed with parameter A = 1. This figure indicates the following assumptions:
— The mean value of the execution time grows linearly with the number of

subtasks by a factor 1/p. This is valid for static scheduling as well as dynamic

scheduling.
— The variances grow by a factor 1/,02 in the case of dynamic scheduling and with
factor 1/(p In p) in the case of static scheduling.

Fig. 10 also indicates that a dynamic scheduler causes shorter execution times
compared to a static scheduler when communication times are disregarded.
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Fig. 11. Graph model representation of asynchronous communication.

4.3. Taking into account communication times

In this section we want to take into account the overhead involved with
communication. We focus on the case of asynchronous communication. This
means that the processors can perform other tasks during the communication
between two subtasks. Fig. 10 indicates that a dynamic scheduler causes shorter
execution times than a static scheduler if we ignore communication overhead.
When using dynamic scheduling we do not know on which processor a task is going
to be executed and therefore cannot start the communication before the processor
is assigned. This means that the processor has to wait for the communication in the
case of dynamic scheduling. In Fig, 11 the communication times are represented by
the communication tasks K;,,..., K;, and K,,,..., Ky,. In the case of a static
scheduler we can insert new edges to represent the scheduling strategy (Fig. 11).
This is not possible for dynamic scheduling.

We assume that p < n. In the case of a dynamic scheduler we can add the
communication times to the execution times of the subtasks and thus get the
following approximation formula:

] n
Xd.yn == ; Z(K.’i +X; +Kp;)

i=1

In the case of a static scheduler the communication for subtask j will usunally be
completed before subtask i is finished. Therefore we get the following approxima-
tion formula:

X

stat

=max{K, +X, +... +X

n/p+KOI3"'5

Ky R, g ik, +X0p]

where X, is the run time of task 7}, K; is the communication time between task T;

and task 7; and K, is the communication time between tasks 7, and T,. Fig. 12

1
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Fig. 12. Static versus dynamic scheduling with respect to communication.

shows that, for a growing number of subtasks, the static scheduler obtains shorter
run-times compared to the dynamic scheduler.

5. Regular task structures

In this section we investigate iterative algorithms, which consist of multiple
parallel-computation steps, The subtasks of one such step, or stage, can be
performed independent of each other. The precedence relations between two
successive steps have the same structure and the task graph models of this type of
algorithms are regular in some sense.

The numerical solution of a system of linear equations using a relaxation

nn |Tx |15
T Ty Ty | Ty
. | |7 [O]
|_ Processor with local memory
(a) (b)
Fig. 13. Data partitioning for numerical solution of linear equations.
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Field with local synchronisation

Fig. 14. Task structures for numerical solution of linear equations.

method is typically representative of this class of applications. If we assume that
the variables are arranged in a two-dimensional field there are several possibilities
of placing the data on the available processors. In a ring architecture it seems to be
adequate to use stripe partitioning as shown in Fig. 13 (b). In a mesh-connected
architecture the use of the field partitioning shown in Fig. 13 (a) is reasonable,

We distinguish between global and local synchronization. Global synchroniza-
tion means that all processors have to wait for the completion of all tasks on stage
i before they can start execution on stage { + 1. In contrast, the execution of a task
on stage i+ 1 in local synchronization can be started when just the neighbour
tasks and the task in the same column on stage i are finished. Fig. 14 shown the
task graphs for global synchronization and for local synchronization on a ring
architecture and a mesh connected processor field. All task graphs in Fig. 14 are
regular in the sense of the definition given below:

A directed acyclic graph G = (T, E) with a set of nodes T={T;; |i(1,...,n)},
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j€{l,...,m}} and a set of edges EC T X T is called regular if and only if there is
a set W with:

W Lyuspbit) XL i)
E={(;qj,nﬂ';)|vse{1,..‘,n—1}:(1,;‘)eW}
VI, €T, i+1:pred(T,) + 0
VI;€T,i#*n:succ(T;)+

Jj is the number of the column and i is the index of the stage,

This regularity of task graphs causes regularity in the total execution time, a fact
which is very important for the analysis of such regular structures. The following
assumption could not be proven in general but numerous examples which were
evaluated using simulation or Markov analysis showed this regular behavior. For
the special case of the well-known N-Graph, which is the simplest non series-paral-
lel graph, a proof is given in [14].

If we add a stage to a regular graph the mean value and the variance of the total
execution time grow by a fixed amount Ay and Ac?, respectively. We call this
stationary behavior.

The above assumption facilitates the evaluation of large regular task graphs.
Regular task graphs must only be evaluated up to a stage in which the stationary
behavior is observed and, for bigger structures, the mean and the variance can be
calculated by adding Au and Ao 2. Stationary behavior can be assumed when the
difference of the increases of the mean value and the variance becomes smaller
than a limit e.

6. Conclusion

Our paper has investigated performance analysis of parallel programs using
precedence graphs. Starting from the practical experience that execution times of
subtasks are typically characterized by small coefficients of variation, we intro-
duced a generalization of exponential polynomials that allows the modelling of this
type of distributions with a small number of stages k;. We extended this class of
distributions to truncated @-exponential polynomials in order to take into account
the fact that run-times of programs are limited. Using the limit distributions of
f-exponential polynomials and truncated 6-exponential polynomials we showed
that the right-hand end point of distributions xy=sup{y: F(¥) <1} must be
carefully chosen in modeling massively parallel structures.

We also investigated selected structures to derive approximation formulas which
can be applied to large models. We presented approximate formulas for the
parallel execution of independent subtasks in Section 4. In Section 4.1 formulas
were derived for models in which the number of processors is sufficient to execute
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all independent subtasks in parallel while in section 4.2 formulas for static and
dynamic scheduling were given.

We also provided a method for the estimation of the total computation time of
multi-stage structures in Section 5. This method is based on the observation that
the regularity of the corresponding task-graphs causes a stationary behavior in the
mean value of the total execution times. When a new stage is added to the
structure — after a certain limit of stages has been reached — the mean value and
the variance of the total execution time increases by a fixed value. This can be used
to evaluate large structures by analyzing graphs which consist of a small number of
stages and then extrapolating the results for large graphs.
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