
1

Broadcast Games and Digital Television

Simon Gibbs, Michael Hoch, Hubert Le Van Gong, Richter A. Rafey, Sidney Wang
Sony Electronics Distributed Systems Laboratory

San Jose, California
 {simon,micha,lvg,rafey,swang}@arch.sel.sony.com

Abstract

Digital television (DTV) allows simultaneous transmission of data along with traditional AV
content. It provides an inexpensive and high bandwidth data pipe that enables new forms of
interactive television and also new types of games, and other applications, for game consoles. This
paper explores the potential role of DTV in future game titles and addresses how to merge television
viewing with game play.

The paper introduces broadcast games, a new form of viewer experience, enabled by DTV, that
combines elements from both television and gaming by using real-time data within the DTV signal
to update game state. As an example, we focus on an auto-racing scenario and describe a prototype
we have developed in this new genre. Auto racing has always been a sport where many leading edge
technologies are tested and is a good candidate for combining AV content, real-time data and a 3D
game engine. Features such as CG visualization of races and racing live against the real drivers are
described.

1. Introduction

Digital television broadcasts now reach tens of millions of receivers worldwide. In Europe, Asia and the US,
digital satellite television and digital cable television have been available for several years and have a growing
viewer base. In the U.S., the Federal Communications Commission has mandated a transition period from
analog NTSC over-the-air broadcast to its digital successor, ATSC, by the year 2006.

The current generation of DTV receivers, primarily cable and satellite set-top boxes (STB), generally offer
limited resources to applications. From a manufacturer’s perspective, the goal has been building low-cost
receivers comprised of dedicated hardware for handling the incoming MPEG-2 transport stream: tuning and
demodulating the broadcast signal, demultiplexing and possibly decrypting (e.g., for pay-per-view) the transport
stream, and decoding the AV elementary streams. The focus has been on the STB as an AV receiver rather than
as a general-purpose platform for downloaded applications and services. However the next generation of DTV
receivers will be more flexible for application development. Receivers are becoming more powerful through the
use of faster processors, larger memory, 3D graphics hardware and disk storage.

Within the software found on a DTV receiver, often called middleware, one of the main components is the
presentation engine. The presentation engine performs rendering and compositing for applications running on
the receiver. Current presentation engines use 2D graphics and a compositing model based on overlay planes.
While this is sufficient for applications with simple graphics requirements, such as “electronic program guides”,
it is far from what is needed for an immersive game experience as provided by modern 3D game engines.
However as 3D hardware starts to appear on DTV receivers, presentation engines are likely to become more
game-engine like in functionality. An important question then for the gaming industry is to determine how
games can take advantage of both the expected convergence between game engines and presentation engines,
and the additional capabilities of DTV receivers.

This paper considers the above question and looks at new forms of gaming that make use of an integrated
presentation engine/game engine. We introduce the notion of broadcast games, applications that combine

2

gaming with live AV content. We also describe a prototype auto race system we have implemented and plan to
test over ATSC broadcast.

2. Broadcast Games

Digital television broadcast services, whether satellite, cable, or terrestrial, are based on the MPEG-2 standard.
In addition to specifying audio/video encoding, MPEG-2 defines a transport stream format consisting of a
multiplex of elementary streams. The elementary streams can contain compressed audio or video content,
“program specific information” describing the structure of the transport stream, and arbitrary data. Standards
such as DSM-CC [5] and the more recent ATSC data broadcast standard [1] give ways of placing IP datagrams
in elementary data streams.

There are several ways the data delivery capability of DTV can be used to enhance the gaming experience.
Perhaps the simplest is as a high-capacity distribution mechanism for game updates. For example, new levels,
characters, etc. can be periodically broadcast and then cached by receivers. Already in the U.S., companies that
aggregate unused ATSC bandwidth are well positioned to provide such a service. Furthermore, the subscription
model – back-end billing database and “conditional access” (content encryption and key distribution) – used by
satellite and cable operators for premium channels and pay-per-view, offers a revenue channel for the provider
of game updates.

Our interest here, however, is more in situations where the AV portion of the DTV signal is directly tied to the
game – what we call broadcast games. Broadcast games are game-like applications that accompany television
programming or rely on data provided by the broadcaster. The natural areas for broadcast games are those forms
of television that already have an affinity to game play, two are readily apparent – TV game shows and sports. In
this paper we will focus on sports events. The basic concept behind a broadcast sports game is that information
about the actual event is made available to a game engine as the event progresses. This real-time data enables
several new forms of game play. The type of game play will vary from sport to sport, but in general ranges from
simple question/answer scenarios to situations where the game player competes against the live competitors.

There are several reasons why sports is compelling area for broadcast games. First, a wealth of data (e.g.,
standings and statistics) is already produced during many sports events and potentially available for broadcast.
Second, specialized tracking systems for sporting events are starting to be used by broadcasters. These tracking
systems capture camera movement and movement of “objects of interest” such as balls, players, cars, etc.
Sending this data via a reliable data channel to the game engine allows us to “synchronize” the game with the
live event. And third, there is already a well-established gaming sector dealing with sports titles and there is
much experience with sports-related modeling and simulation.

3. Related Work

Our work on broadcast sports games builds on two areas: attempts at offering a “play along” element for
television or sports, and systems that provide real-time data for sports events by tracking object and camera
movements.

Several television game shows are experimenting with formats allowing viewer participation. Columbia TriStar
has produced interactive versions of Wheel of Fortune and Jeopardy that are preloaded with ATVEF [6]
broadcast triggers to enable viewers to play along with the game while it is aired. The interfaces are adapted to
TV viewers and run on the WebTV platform. The interaction takes place on the client, but scores may be
uploaded and compared to other viewers to enhance the social competitive element. As another example. ABC
offers a play along form of Who Wants to be a Millionaire through the use of a companion web site.

A few game companies have made a first step in the area of live gaming by offering the possibility of racing
against the drivers. One notable example, AniVision’s Net Race Live for the IRL (Indy Car Racing League),
allows several thousands of people to play online against the real drivers. In Europe Kalisto has a similar feature

3

for FIA GT Championship racing based on its game called Ultimate Race Pro. Live race games for the two most
popular leagues – Formula One and NASCAR – are not yet available but next year Sportvision will start offering
real-time car position data from NASCAR races.

Several companies have developed specialized tracking systems for collecting real-time data from different types
of sports. These tracking systems are now used by broadcasters to add graphics elements that are “registered” or
“locked on” to the video. An early example is the Sportvision’s FoxTrack hockey puck tracking system [4].
FoxTrack allows the broadcaster to render glows or streaks where the hockey puck appears in the video frame.
More recently Sportvision has developed a system for rendering a virtual “1st and 10” line now used in many
NFL broadcasts. Another form of registered graphics enhancement, also targeted towards sports broadcasts, is
the insertion of images (typically advertising logos) registered to physical surfaces at the event site (e.g., the
playing field, existing billboards). Orad and Princeton Video Image are among the pioneers of this technique. As
a recent example, in NBC broadcasts from the summer Olympics in Sydney, shots of the swimming events had
flags inserted into the swimming lanes to help viewers identify the competitors.

Extremely accurate camera tracking is the basis for inserting registered graphics in live video. Camera tracking
equipment is well known from virtual studios [7] and special-effects work, however live production with high-
zoom cameras, as is common for sports, adds to the challenge of collecting accurate camera data.

4. Example: Auto Race Scenarios

We now describe a set of broadcast game scenarios based on auto racing. We assume that the television signal
contains coverage of a race event plus additional data that has been inserted by the broadcaster. This additional
data is either generated by the broadcaster or obtained from third party sources (e.g., the race association or
specialized data providers). The television signal is transmitted to a receiver where the data is extracted and
passed to an application running on an integrated game engine/presentation engine. No back channel is assumed,
but the following scenarios can be extended in several ways (e.g., multi-player, virtual leagues) if a back channel
is present.

The data sent to the receiver is a combination of the data already produced (and used by broadcasters) and
tracking data that requires additional equipment. It consists of:

• standings data – Standings data is typically compiled by some entity designated by the racing authority. It
will typically include the actual standings plus derived information (e.g., number of laps led, best lap times).
Standings data is already made available to broadcasters.

• telemetry data – The cars used in Formula One, NASCAR and other race leagues are often equipped with
sensor devices that measure and transmit operational data (e.g., car velocity, gear position, etc.). Currently,
this “telemetry” data is used by pit crews to monitor car and driver performance and by broadcasters to
generate on-air graphics.

• car tracking data – Car tracking data gives the position (e.g., in GPS coordinates) of the cars in the race.
This data is difficult to obtain in real-time and, depending on the tracking technology used, may have an
error of a meter or more.

• camera tracking data – Camera tracking gives the position and orientation of broadcast cameras plus their
zoom and focus settings.

The auto racing scenarios that we have developed offer different levels of interactivity. The broadcast game
should complement, not compete against, the television programming. We recognize that in many cases viewers
will just want to watch the broadcast and not be distracted by a game. On the other extreme are those who want a
racing game allowing them to play along and actively participate in the live event; for such viewers, the main
benefit of the DTV feed is to get more out of their game. It should also be recognized that there is a wide middle
ground between these two extremes. Here interaction may be sporadic and left to the discretion of the viewer –
for instance, they might choose to answer a trivia question, or play a simple game during a lull in the TV action.

4

Fantasy

Fantasy teams are commonly known from football, and recently fantasy team play for other sports like baseball,
basketball, hockey, golf and auto racing have become popular on the Internet. In fantasy leagues, points are
collected for a user defined team or collection of drivers. These points are usually updated after an event, but can
be updated in real time if standings data is added to the video broadcast of the event.

With the data streams described above, new forms of play along scenarios are made possible and the real-time
updates of fantasy scores can be displayed while watching the broadcast. In car racing, for example, the user
could select a team of drivers and collect the points each driver gets in the race. Additionally, any driver who
leads at least one lap during the race receives some bonus points, or the driver who leads the most laps during
the race receives some extra points. With a live broadcast this scheme can also be extended to gaining points for
passing. User interaction can be incorporated by predicting the time for a pit-stop, or answering trivia questions
that accumulate to the fantasy points. These questions can also be tied to the sponsors of the race and create
potential revenue models.

Assuming the broadcast stream contains the standings information of the cars in the race and camera information
of the current video stream, further interactive features are possible that enhance the play along experience. One
obvious one is the display of the fantasy standings data, i.e., the standings customized to the user’s selected
fantasy team (see Figure 1a) or the real-time presentation of trivia questions (Figure 1b). With the help of the
camera data, and car position data, it is possible to highlight a selected car in the video feed, e.g., draw a halo
around it. Hence, the user is able to highlight his favorite driver when he comes into view, or go through the list
of his team’s drivers and have them highlighted in the video feed.

Figure 1: a) Fantasy Score, b) Polls and Trivia Questions

With 3D rendering capabilities on the receiver site, we can further enhance the viewing experience by allowing a
“virtual” mode. By pressing a button on the remote, the user will fade from the video feed to a virtual scene that
is frame-aligned with the video feed. The viewer can continue watching the race in virtual mode or switch back
to video. Virtual mode is made possible by using registered cameras at the event site and interpreting the camera
and car tracking data on the receiver site in order to render a live visualization of the event. The virtual mode
allows a viewer to follow a favorite driver from uncommon camera perspectives, e.g. helicopter close-up view,
or to follow the fantasy team even if the drivers are currently not leading (the broadcast coverage is often
focused on leading drivers). This CG-viewing capability allows a close-up focus on the fantasy team while not
loosing track of the race itself. Since the location and registration of the event cameras is known, one can allow
the user to select a camera in the virtual scene that represents a real camera, hence maintaining the original
camera work. We believe it will also open up other possibilities of gaming that are connected to a live event.

5

Live Game

The live game scenario falls on the other end of the spectrum of gaming activities tied to a DTV broadcast. It is
intended for viewers who wish to actively interact with the broadcast by racing against the real drivers.

The car simulators used by current game engines have attained the level of accuracy where drivers get similar
times on the simulators and real tracks. By running a simulator on a receiver and connecting it to the telemetry
and tracking feeds from the DTV, the game engine can now replace its AI simulation by updates received from
its data feed. This adds even more excitement to playing these games, as players will be able to compare
themselves to the real professional drivers. Viewers could also become members of their fantasy teams and earn
additional points (e.g., by passing real drivers). If IP connectivity is available, players from other homes can also
be added to the fantasy teams.

5. Test Implementation

We are currently developing a test system that uses ATSC broadcast for delivery of an auto-race broadcast
game. The ATSC data pipe is about 19.4 Mbps. We are working with SDTV (standard definition television) AV
content, rather than HDTV. SDTV requires about 5 Mbps for sports video. Although over two thirds of the
ATSC pipe is then unused and potentially available for data delivery, broadcasters will likely fill most of the
unused bandwidth with additional SDTV signals or other data services. Consequently, our system has a more
conservative data budget of 200 Kbps. This is also within the limit of what can be provided by current
broadband connections (xDSL or cable modem) and so leaves open the possibility of separated delivery of the
data and video feeds.

Our test system supports a variety of interactive scenarios including fantasy teams and polling as described in
the previous section. We have also modified a game engine to use real-time feeds to update game state.
Currently we are working with a data set assembled after a race and not providing full coverage of the event. By
the end of the year we expect more complete data to be available and are aiming for an end-to-end transmission
test in 2001.

Test System Configuration

The features found in our prototype are intended for a DTV receiver with an integrated presentation engine/game
engine environment. At the time of development we did not have such a platform available, so our test system
uses a “two box” receiver shown in Figure 2. Although the presentation and game engines run on distinct
processors, they are coupled by a network link allowing the application to control both engines.

6

Figure 2 Configuration of end-to-end test system

Figure 2 illustrates the main hardware and software components in our end-to-end test system for broadcast
games. The left-hand side depicts the production of an MPEG-2 transport stream with encapsulated IP data. The
configuration shown here differs from the typical DTV production chain through the introduction of the two
components labeled Data Acquisition and Data Injector. The data acquisition component handles the various
real-time data sources made available to the broadcaster. For our car racing example application, this component
obtains the camera tracking, car tracking, car telemetry and standings data feeds and converts these into IP
packets which are then sent to the data injector. The data injector receives the IP packets and encapsulates them
in an elementary stream that is multiplexed with the AV elementary streams. The resulting transport stream is
then modulated and transmitted to the receiver device.

The DTV receiver tunes to a DTV signal, demodulates and demultiplexes the incoming transport stream,
decodes the AV elementary streams, and passes the result to the presentation engine. The DTV receiver also
extracts encapsulated IP data from elementary streams and passes this to the application. The application is
responsible for initialization and control of the presentation engine and game engine. It also relays incoming data
to the game engine, and communicates with the game engine via the “bridge” component shown in Figure 2.

Presentation Engine Extensions

The presentation engine in our test implementation is called Blendo [2]. Developed by our colleagues at Sony,
Blendo is derived from VRML but adapted to support the extensibility, performance, and programmability that
are required to be suitable for interactive TV. Blendo exploits the graphics capabilities of emerging consumer
platforms to provide late composition, i.e., composition on the receiver rather than prior to broadcast. Blendo
enables consumer devices to deliver the production quality that traditionally could only be achieved with
equipment in broadcast suites. The syntax and structure of Blendo is based on VRML, and as such these
extensions are applicable to VRML in general.

To enable the features we wanted to showcase in our prototype, there are three major areas of extensions we
built. These extensions are implemented as new Blendo nodes that allow declarative use and easy authoring in
the VRML/Blendo syntax. The extensions are: registered graphics insertion, handling of streaming data, and live
video integration.

7

Registered Graphics Insertion

Some broadcast game scenarios require the placement of graphic objects be correlated with real objects in the
video. Since current camera and object tracking systems provide the data required for accurate graphics
insertions registered with the video, we have deve loped new nodes in Blendo that support these data fields and
allow a declarative representation for camera-aligned overlay graphics in the VRML/Blendo syntax.

Camera tracking equipment typically uses encoders to read the current pan, tilt, and twist of the camera, as well
as, the zoom level, i.e., the field of view. Since the position of the real camera is tracked, the virtual camera can
be placed so that it corresponds to the real camera. The next step is to render the graphics at the appropriate
position and size using the virtual camera and, thereafter, composite the rendered set with the camera shot. We
use a two-pass rendering technique that renders the scene that is to be used as a texture in the second pass. The
virtual camera is implemented as a modified VRML Viewpoint node that adjusts itself in position, field of view,
pan, tilt, and twist corresponding to the current video feed (the data is getting collected and routed using the
ATSC_DataHandler node described in the next section). We also developed a parameterized GridNode as an
extension to Blendo that renders a scene on to a grid. We then adjust the texture coordinates of the grid to correct
for optical center shift and radial lens distortion of the real camera. The final texture is composited (overlaid) on
the video feed. The lens correction becomes necessary if we want to insert graphics objects that are aligned with
the content of the video feed. Without lens distortion correction, graphics objects can appear to slide over the
video as the camera pans or zooms. We apply a correction technique that is related to the well-known techniques
of rectification and geometric correction [8].

Streaming Data

While VRML provides an event model that enables triggering media events based on signals, there is no data
architecture built into VRML beyond some simple field types. For this reason we have created a top-level
extension node for handling the ATSC data stack called ATSC_DataHandler.

video

audio

carousel carousel carousel

 event1 event2

continuous camera, tracking, telemetry data

5 Mbps

200 Kbps

time

PID = 0x10

PID = 0x11

PID = 0x20

PID = 0x21

PID = 0x22

Figure 3 Transport stream used by test system.

As shown in Figure 3, referencing an elementary data stream is done through the MPEG-2 program
identification field (PID) of the stream. A DTV receiver should have the ability to filter out any unwanted data
streams and only process data streams with specific PIDs. Furthermore, we have defined and classified three
types of data streams: event stream, continuous stream, and carousel stream. An event stream contains data that
occurs sporadically. One example is the polling scenario where the broadcaster can insert trivia or polling
questions anytime during the program. Typically this type of data will contain a MPEG-2 presentation time
stamp (PTS) so that the compositor can use this information to present the data at the appropriate time during the
broadcast. On the other hand, a continuous stream contains data that is updated throughout the entire program.
Examples include camera tracking data and car position/telemetry data. For this type of stream, synchronization
with the broadcast video is also via PTS values. Finally, we have defined a type of stream called carousel. Data
contained in the carousel are looped repeatedly during the broadcast. For example, in motorsports, statistical data
(e.g. current standings, current lap, etc.) can be carouseled so viewers who tune in during the middle of the

8

broadcast can access this information at the next carousel cycle. Also, user interface assets and configuration
data that are specific to a particular race can be placed in the carousel.

One feature we are exploring is provisioning applications that persist over multiple broadcasts, e.g., an
interactive application for the entire racing season. Assets that remain the same over time are stored locally on
the presentation platform, while assets specific to particular races (e.g., track model, sponsor logos) are
downloaded via the data carousel.

Live Video Integration

VRML97 supports a MovieTexture primitive to present video clips, but streamed video from a broadcast is not
directly supported. Blendo introduces a new level of abstraction to support video synthesis, called surfaces. By
using this abstraction, Blendo’s architecture enables arbitrary content (e.g., video, HTML, Flash) to be rendered
into the scene at the appropriate frame rate without burdening other elements (e.g., a 5 fps animation on one
surface would not prevent video on another surface from playing at 30 fps). Blendo introduced a MovieSurface
node to capture the semantics of controlling and displaying full frame-rate video. In our work, we have
subclassed the MovieSurface to support a live video stream (vs. locally stored video) as a VideoSurface node that
takes decoded video from a Hauppauge ATSC receiver/tuner card [3] and displays it on the surface.

Game Engine Extensions

On the pure gaming side, we modified a car-racing simulator so that it could receive remote car information such
as speed, position and orientation on the track instead of using its AI engine to simulate the cars. This is similar
to a networked version of such a game, except that the information provided for the “real” cars did not perfectly
match what the game engine needed. For instance, the position of a real car did not include the side-to-side
position on the track. We then had to partly rely on the simulator to complete each car’s state in the simulation.

One of the challenges when enabling gamers to race live against real drivers is maintaining consistency between
the race game (and what the player experiences) and the real race. Since the live racers obviously don’t see the
virtual cars (from the game), they will not take any measures to avoid them. Hence, the collision detection
algorithm used by the game needs some modifications. Several types of collisions can occur, they are
represented by the four different cases in the following table:

bumps into real car player’s car

real car Case 1 (real world) Case 2 (live game)

player’s car Case 3 (live game) Case 4 (typical game)

Case 1 and Case 4 do not need any special treatment. Case 1 corresponds to a collision happening in the real race
and so there is no decision to take about what is happening: the game just updates the cars’ positions using
tracking data. Case 4 is a typical game situation, there is nothing to change here. The two remaining cases
involve changes to the game logic.

In Case 3, a player bumps into a real car. Whereas the game engine determines the effects on the player’s car as
if it were a normal collision, the behavior of the real car (in the game) depends on how the game handles
tracking data. We have considered two possibilities representing different tradeoffs between realism and
accuracy:

• The game uses only the received tracking data to position the real cars in the game. In this case, there is no
possible effect on the rendered real car after a collision with a player. This solution is fairly straightforward
from a design point of view, it is accurate regarding depiction of the real race but the lack of realism within
the game may be disturbing to some players.

9

• The game may also use its simulator capabilities to compute a new position of the real car. In this situation,
after a player collides with a real car, the game engine modifies the position/orientation of the (rendered) real
car to reflect the collision. The game engine then progressively repositions the real car so that it matches the
corresponding tracking data. Although technically more challenging, this represents a much more realistic
behavior from the game player’s perspective. The drawback may be an inconsistency between the live
drivers’ performance (lap time…) and their performance in the game.

The last type of collision, Case 2, is when a real car runs faster and bumps into a player’s car. Once again, we
identify two different ways of dealing with this issue:

• Do not allow overlap between two cars: A player’s car is handled in the same way as in a classical race
simulator and thus can be bounced out by an incoming real car. Though this might make the race difficult
from the player’s point of view, this represents the easiest way to implement a broadcast-driven game
starting from an existing game.

• Allow partial overlap between two cars: Here, a real car might overlap a player’s car without inducing any
effect on the player’s car on the condition that the latter was ahead at the time the collision occurred.
Although this is more difficult to implement in a collision detection algorithm of a game, this would
probably make the game more playable.

6. Future Directions

Broadcast games build a gaming experience on top of broadcast content. This paper has described some first
steps in this direction in the area of auto racing. We plan to continue this work by studying how to better
integrate live video content with a game experience. One challenging area is to realistically insert game
elements, such as a game car, into the live video. This would allow viewers at home to see their friends or family
members appear in the competition. This could be extended to a complete parallel competition with the best of
the virtual players competing live against the pros and the virtual player being inserted in the live broadcast for
all to see. Another example of video/game integration is what could be called a “texture channel” – using live
video as dynamic textures in the gaming model. This would increase the visual richness of the game and allow it
to more accurately reflect reality (e.g., weather conditions, shots of the stands, etc.).

References

[1] ATSC Data Broadcast Standard (A/90), ATSC July 2000, www.atsc.org/Standards/A90/A90.html

[2] Broadwell, P., Kent, J., Marrin, C., and Myers, R. Blendo: An Extensible Media Modeling Architecture.
http://www.web3d.org/fs_specifications.htm, 1999.

[3] Casey, J.B., Aupperle, K., Digital TV and the PC. http://www.hauppauge.com/html/dtv.pdf , November
1998.

[4] Cavallaro, R., The FoxTrack Hockey Puck Tracking System. IEEE Computer Graphics and Applications,
17(2):6-12, March-April 1997.

[5] Enhanced Content Specification, Advanced Television Enhancement Forum (ATVEF),
http://www.atvef.com/library/spec1_1a.html, 1999.

[6] Extensions for Digital Storage Media Command & Control, International Standard ISO/IEC 13818-6,
1999.

[7] Gibbs, S. et al., Virtual Studios: An Overview. IEEE Multimedia, 5(1) :18-35, January-March 1998.

[8] Niemann, H., Pattern analysis and understanding. 2nd ed. Springer, Berlin Heidelberg New York, 1990.

